Find suggested replacement products here
Read more…
Learn when you might choose one technology over the other in this blog piece: Nd:YAG for Fiber Laser Welding?
Use a picosecond laser for corrosion resistant black marking on stainless steel alloys: UDI marking, banding, part traceability
What’s all the fuss about? Read about micromachining with a femtosecond laser in our blog.
What is it and what can you do with it?
Laser soldering and plastic welding; both possible with direct diode lasers
Read our blog piece Bringing Laser Technology In House: 6 Simple Steps to Success which outlines some of the pitfalls and how to avoid when moving from contract manufacturing.
How to design ring projections for hermetic sealing.
Configure your Glovebox here
Fundamentals of Hot Bar Reflow Soldering
Check out these tips and tricks for successful setup of your micro tig welding application.
Laser or resistance technology? Which do you choose when it’s critical to prevent external environmental conditions from penetrating the package?
Projection welding of Fasteners to Hot Stamped Boron Components
Laser Cleaning Metal Improves Battery Pack Reliability. Read the blog now.
Industry increasingly relies on sensors in both factories and products. New sensor technologies mean new product capabilities with improved performance and efficiency.
Fast, clean, efficient! Read the blog.
Dark marks that are resistant to bacterial growth, passivation, corrosion and autoclaving. Read more.
High production rate + high yield = industrial process success. Understanding both the process requirements and production environment allows companies to optimize their production rates resulting in lower cost per part and higher profit.
Visit our blog for more information
Micro TIG welding (micro tungsten inert gas), also known as pulse arc welding, is an arc welding process that uses a non-consumable tungsten electrode to produce an arc which creates the weld. Micro TIG welding is a non-contact process, which, like laser welding, requires an external fixture to apply force to create proper part fit up. It utilizes a constant current welding power supply which produces high quality welds with minimal heat affected zone by generating arcs between the workpiece and the tungsten electrode, and using the resultant heat to create the joint.
Micro TIG processes focus on welding small parts of area 5 mm x 5 mm. These are usually delicate parts in the automotive, medical, or electronics industry. Pulsed arc welding has many advantages. For example, it’s a solder-free process and the resultant weld is highly durable when exposed to vibration and heat. In addition, pulsed micro TIG welding is widely applicable for joining high melting point metals, dissimilar metals, and even thin magnet wires of φ0.02mm.
There are two mechanisms to start an arc – a standard high voltage start mechanism and a touch start mechanism. In the former, the standoff between electrode and workpiece is set at a fixed distance. The start arc must then overcome the breakdown of air to bridge the gap. In the latter, the electrode comes down to touch the workpiece and the start arc is generated when they are in close proximity. The weld area is generally protected from atmospheric contamination by use of an inert shielding or cover gas (argon or helium).
Learn more about AMADA WELD TECH and our industry-leading products in our newsroom.
An educated customer is a happy customer! Learn more about our eight different manufacturing technologies, watch a video, schedule some training or sign up for our blog in the Learning Center.
Everyone needs a little help now and again. Visit the support center for technical documents, applications assistance, field service, customer service, sales assistance, software downloads and more.