INVERTER-TYPE WELDING POWER SUPPLY IPB-5000B IPB-5000B-MU

USER MANUAL

Copyright © 2005-2024 AMADA WELD TECH

The engineering designs, drawings and data contained herein are the proprietary work of AMADA WELD TECH and may not be reproduced, copied, exhibited or otherwise used without the written authorization of AMADA WELD TECH.

Printed in the United States of America.
Revision Record

Revision	EO	Date	Basis of Revision
A	30000	$03 / 05$	None. Original edition (IPB-5000A).
B	46191	$01 / 21$	Include displacement monitor in standard unit (IPB-5000B)
C	47208	$01 / 24$	Update Manual Title

FOREWORD

Thank you for purchasing an Amada Weld Tech IPB-5000 Inverter Power Supply. Upon receipt of your equipment, please thoroughly inspect it for shipping damage prior to its installation. Should there be any damage, please immediately contact the shipping company to file a claim, and notify us at:

Amada Weld Tech Inc.
1820 South Myrtle Avenue
Monrovia, CA 91016
Telephone:
FAX:
(626) 303-5676
e-mail:

The purpose of this manual is to supply operating and maintenance personnel with the information needed to properly and safely operate and maintain the IPB-5000 Power Supply. We have made every effort to ensure that the information in this manual is accurate and adequate. The contents of this factory manual are subject to change without notice. AMADA WELD TECH is not responsible for any loss or injury due to improper use of this product.
This manual covers the following models:

Original Model Name	Original P/N			
IPB-5000A-MU/200-240	$1-289-01$			
IPB-5000A-MU/200-240/DISP	$1-289-01-02$			
IPB-5000A-MU/380-480	$1-289-01-01$			
IPB-5000A-MU/380-480/DISP	$1-289-01-03$	\rightarrow	IPB-5000B-MU/200-240/DISP	$1-289-02-02$
:---:	:---:	:---:		
IPB-5000B-MU/380-480/DISP	$1-289-02-03$			

The operation of the IPB-5000A is basically the same as the IPB-5000B, except that the Displacement Monitoring capability is now standard in the IPB-5000B models. This manual can be used as a reference for both the IPB-5000A and IPB-5000B Power Supply models.

Amada Weld Tech adds an I/O Accessory box on to the rear of the IPB-5000B Power Supply. This added option has the -MU suffix in the part number. See addendum at the end of this manual for information about the added -MU option.

Thank you for purchasing our Inverter Welding Power Supply IPB-5000B.

- For correct use, read this operation manual carefully.
- After reading, save it in a proper place where you can easily access to.

Contents

1. Special Precautions
(1) Safety Precautions 1-1
(2) Precautions for Handling 1-4
(3) On Disposal 1-4
(4) Warning Labels for Safety 1-5
(5) Function Difference Depending on Model 1-5
2. Features 2-1
3. Packaging 3-1
4. Name and Functions of Each Section
(1) Front Panel 4-1
(2) Rear Panel 4-3
5. Installation and Connection
(1) Installation 5-1
(2) Connection 5-2
6. Description of Display Screens
(1) Operation Flow 6-1
(2) MENU Screen 6-2
(3) SCHEDULE Screen 6-2
(4) MONITOR Screen 6-6
(5) COMPARATOR Screen 6-8
(6) ENVELOPE Screen 6-9
(7) PRECHECK Screen 6-13
(8) CONTROL Screen 6-14
(9) STATUS Screen 6-16
(1) STATUS (1/2) Screen 6-16
(2) STATUS (2/2) Screen 6-18
(3) ERROR SETTING Screen 6-20
(4) MISC Screen 6-20
7. Basic Operation 7-1
8. External Interface
(1) Connection Diagram for External Input/Output Signals 8-1
(1) When contacts on PLC are used as input signal 8-1
(2) When NPN transistor (sink type) on PLC is used as input signal 8-2
(3) When PNP transistor (source type) on PLC is used as input signal 8-3
(4) When solenoid valves are activated by the use of an external power supply 8-4
(5) When solenoid valves are activated by the use of an internal power supply- 8-4
(2) External Input/Output Signals 8-4
(3) Schedule No. and Schedule Select Terminals 8-8
9. Timing Chart
(1) Fundamental Sequence 9-1
(2) Determination of Weld Schedule 9-3
(3) Behavior of START SIG. HOLD 9-4
(4) Behavior of END SIG. TIME 9-5
(5) Behavior of SOL1 and SOL2 9-6
(6) "Error" or "Caution" in PRECHECK 9-7
(7) At Occurrence of "Error" or "Caution" 9-8
(8) Behavior in TRANS SCAN MODE 9-9
(1) OFF Setting 9-9
(2) ON Setting 9-9
(3) 1-5 Setting 9-10
(4) 1-2 Setting 9-11
(5) 1-3 Setting 9-12
(6) 1-4 Setting 9-12
(9) Movement of Displacement Sensor 9-13
10. External Communication Function
(1) Introduction 10-1
(2) Data Transmission 10-1
(3) Configuration 10-2
(1) RS-485 10-2
(2) RS-232C 10-2
(4) Protocol 10-3
(1) Single-directional Communication Mode 10-3
(2) Bi-directional Communication Mode 10-4
(5) Data Code Table 10-8
(1) Order Table of Schedule Data 10-8
(2) Order Table of Monitor Data (Most Recent Monitor Value) 10-9
(3) Specified Code 10-10
11. Specifications
(1) Specifications 11-1
(2) Optional Items (Separately Sold) 11-6
(1) Input Cables PK-01855-ㅁㅁㅁ 11-6
(2) Output Cables PK-01856-ㅁㅁㅁ 11-6
(3) [SENS] Cables SK-05741 11-7
(4) Start Cables A-03081 11-7
(5) Displacement Sensors 11-7
(6) Displacement Sensor Conversion Cables 11-7
12. Error Codes 12-1
13. Outline Drawing
(1) IPB-5000B-00-00/01/03/04/07 13-1
(2) IPB-5000B-00-02/05 13-1
(3) Displacement Sensors 13-2
(1) GS-1830A Type, Ono Sokki 13-2
(2) GS-1813A Type, Ono Sokki 13-3
(3) LGK-110 Type, Mitutoyo 13-4
(4) ST1278 Type, HEIDENHAIN 13-5
14. Schedule Data Table
(1) Weld SCHEDULE Setting 14-1
(2) PRECHECK Setting 14-8
(3) COMPARATOR Setting 14-11
(4) CONTROL Setting 14-18
(5) STATUS Setting 14-25

1. Special Precautions

(1) Safety Precautions

Before using, read "Safety Precautions" carefully to understand the correct method of use.

- These precautions are shown for safe use of our products and for prevention of damage or injury to operators or others. Be sure to read each of them, since all of them are important for safe operation.
- The meaning of the words and symbols is as follows.

Denotes operations and practices that may imminently result in serious injury or loss of life if not correctly followed.

$\triangle C A U T I O N$

Denotes operations and practices that may result in personal injury or damage to the equipment if not correctly followed.
These symbols denote
"prohibition". They are
warnings about actions out of
the scope of the warranty of
the product.
Each symbol with a triangle
denotes that the content
gives DANGER, WARNING
or CAUTION to the operator.

Do not touch the inside of the Power Supply unnecessarily.

Since very high voltages are charged to the inside of this Power Supply, it is very dangerous to touch it unnecessarily.
Any person other than service personnel, or authorized representatives' personnel must not touch the inside.

Never disassemble, repair or modify the Power Supply.
These actions can cause electric shock and fire.
If any part needs to be checked or repaired, contact us or your distributor for help.

Never burn, destroy, cut, crush or chemically decompose the Power Supply.

This product incorporates parts containing gallium arsenide (GaAs).

\triangle WARNING

Do not put your hands between the electrodes.

When welding, keep your fingers and hands away from the electrodes.

Do not touch any welded part or electrodes during welding and just after

 welding finished.The welded part of a workpiece, electrodes and arm are very hot. Do not touch them; otherwise you may be burnt.

Ground the equipment.

If the Power Supply is not grounded, you may get an electric shock when there is trouble, or when electricity leaks.

Connect the specified cables securely.

Cables of insufficient current capacities and loose connections can cause fire and electric shock.

Do not damage the power cable and connecting cables.
Do not tread on, twist or tense any cable. The power cable and connecting cables may be broken, and that can cause electric shock and fire.
If any part needs to be repaired or replaced, consult us or your distributor.
Do not use any damaged power cable, connecting cable and plug.
That can cause electric shock, short circuits and fire.
If any part needs to be repaired or replaced, consult us or your distributor.

Stop the operation if any trouble occurs.

Continuous operation after occurrence of a trouble such as burning smell, abnormal sound, abnormal heat, smoke, etc. can cause electric shock and fire. If such a trouble occurs, immediately consult us or your distributor.

Persons with pacemakers must stay clear of the welding machine.
A person who uses a pacemaker must not approach the welding machine or walk around the welding shop while the welding machine is in operation, without being permitted by his/her doctor. The welding machine generates a magnetic field and has effects on the operation of the pacemaker while it is turned on.

Protective gear must be worn.

Put on protective gear such as protective gloves, long-sleeve jacket, leather apron, etc. Surface flash and expulsion can burn the skin if they touch the skin.

Wear protective glasses.
If you look at the flash directly during welding, your eyes may be damaged. If any Surface flash and expulsion gets in your eye, you may lose your eyesight.

\triangle CAUTION

Apply the specified source voltage.
Application of a voltage out of the specified range can cause fire and electric shock.

Do not splash water on the equipment.
Water splashed over the electric parts, can cause electric shock and short circuits.

Use proper tools (wire strippers, pressure wire connectors, etc.) for termination of the connecting cables.

Do not cut the conductor of wire. A flaw on it can cause fire and electric shock.

Install the equipment on firm and level surface.
If the equipment falls over or drops from an uneven surface, injury may result.

Do not sit on or do not put things on it.
Sitting on it, or putting things on it may cause malfunction.
Keep combustible matter away from the welding machine.
Surface flash and expulsion can ignite combustible matter. If it is impossible to remove all combustible matter, cover them with non-combustible material.

Do not cover this equipment with a blanket, cloth, etc.
If such a cover is used, it may be overheated and burn.

Do not use this Power Supply for purposes other than welding.

Use of this equipment in a manner other than specified can cause electric shock and fire.

Use ear protectors.

Loud noises can damage hearing.

Keep a fire extinguisher nearby.

Make sure there is a fire extinguisher in or near the welding shop in case of fire.

Regularly inspect and maintain the equipment.

Regular inspect and maintenance is essential to safe operation of the equipment. If you see any damage, make necessary before starting the operation.

(2) Precautions for Handling

- When transporting or moving the Power Supply, do not lay it down. Also, handle the Power Supply with care so as not to make an impact such as drop on it.
- Install the Power Supply on a firm and level surface. If it is used inclined or on its side, it may have a malfunction.
Also, provide 10 cm clearance to the intake and exhaust for improving the effect of heat release (Refer to 5. (1) Installation).

■ Do not install this Power Supply in the following places:

- Where there is considerably damp (humidity is higher than 90%).
- Where the ambient temperature is above $40^{\circ} \mathrm{C}$ or below $5^{\circ} \mathrm{C}$.
- Where there is nearby high noise source.
- Where the Power Supply may be exposed to chemicals.
- Where moisture may be condensed on the surface of the Power Supply.
- Where there is considerable dirt.
- Where the Power Supply may be subjected to vibration or impact.
- Where the altitude is above 1000 meters.
- If the outside of the Power Supply is stained, wipe it with a dry cloth or a moistened cloth. If it is badly stained, use diluted neutral detergent or alcohol to clean it. Do not use paint thinner, benzene, etc., which can discolor or deform the parts.

■ Do not put screws, coins, etc., in the Power Supply, as they may cause a malfunction.

■ Operate the Power Supply according to the method described in this operation manual.

■ Operate the switches and buttons carefully by hand. If they are operated roughly or with the tip of a screwdriver, a pen, etc. they may be broken.

- Operate the switches and buttons one at a time.

If two or more of them are operated at a time, the Power Supply may have trouble or may be broken.

■ The Power Supply is not equipped with auxiliary power such as an outlet for lighting.

- The cable to supply power, the welding head, the welding transformer, and cables for connecting among the welding head, the welding transformer and the Power Supply are separately needed to use the Power Supply.
- The I/O signal line to start the Power Supply is not attached. Prepare the crimp-on terminal and line for wiring to the terminal block.

(3) On Disposal

This product incorporates parts containing gallium arsenide (GaAs). At the time of disposal, separate it from general industrial waste or domestic waste and carry out the disposal in accordance with applicable laws and regulations.

(4) Warning Labels for Safety

The following warning labels are attached to the Power Supply for safe operation. The location of labels and the meaning of the symbols are as follows:

Location: the side surface of a plastic cover inside IPB-5000B Meaning: Danger

Location: Output terminal cover inside IPB-5000B Meaning: Danger of Electrical Shock

(5) Function Difference Depending on Model

The function of "only for Model with Displacement Sensor" described in the operation manual is effective for the models equipped with Displacement Sensor as follows.
Other functions are effective for the Models with Sensor as same as the standard models.

Model		Welding Power	Sensor Equipped	CE Marking Compliance
IPB-5000B	$\mathbf{- 0 0 - 0 0}$	200 to 240V AC	\times	\times
	$\mathbf{- 0 0 - 0 1}$	380 to 480V AC	\times	\times
	$\mathbf{- 0 0 - 0 2}$	380 to 480V AC	\times	\bigcirc
	$\mathbf{- 0 0 - 0 3}$	200 to 240V AC	\bigcirc	\times
	$\mathbf{- 0 0 - 0 4}$	380 to 480V AC	\bigcirc	\times
	$\mathbf{- 0 0 - 0 5}$	380 to 480V AC	\bigcirc	\bigcirc
	$\mathbf{- 0 0 - 0 7}$	200 to 240V AC	\times	\times

O: Applicable \times : Not Applicable

2. Features

The IPB-5000B is an inverter welding power supply designed for spot welding and fusing.
Because of a compact design, it is easy to move and install. In addition, the monitor function makes possible the judgment of defective or non-defective welding.

■ Has a welding current monitoring function for the judgment of weld quality.
■ The selection from four control methods of Constant-current control, Constant-voltage control, constant-current/constant-voltage combination control and constant-power control is applicable for realizing the stable weld quality.

■ Has an interrupting function (INTERRUPT) to interrupt fusing current by externally inputting the displacement of an electrode, etc. for stable fusing.

■ Weld current can be stopped when the displacement reaches the set value, because the displacement change between electrodes generated by fusion penetration etc. is measured (only for the model with a displacement sensor).

■ As an inverter is used, the power factor is high and the power condition is stabilized.

- Because of the menu selection system, setting of various items can easily be done.
- With four protective functions, the operator can work at ease.
- Over current detecting function
- No-current / no-voltage detecting function
- Thermostat fault detecting function
- Self diagnostics

■ The TFT LCD is employed. You can see monitor values of the welding current etc. clearly from any angle.

3. Packaging

Shipping Kit List
Verify that contents of the container agree with the kit list. If you see any damage, please contact us.

Packaged Kit	Quantity
IPB-5000B	1
Operation Manual	1
Cable Clamp (Large) for fixing I/O Cable	2
Cable Clamp (Small) for fixing I/O Cable	3

4. Name and Functions of Each Section

(1) Front Panel

Front Panel

(1) Display Screen

Displays the information such as setting of a weld schedule, monitored values of weld current, etc.
(2) POWER Lamp

Lights up when the power switch is turned on to supply the power to IPB-5000B and IPB-5000B works normally.
(3) START Lamp

Lights up while the start signal is input to make the sequence start.
(4) WELD Key with WELD Lamp

Use WELD Key if you want to make the sequence start without flowing the weld current.
When WELD Key is pressed to extinguish WELD Lamp, then the weld current does not flow.

(5) CURSOR Key

Moves the cursor upward/downward or to the right/left on Display Screen.
(6) MENU Key

Press MENU Key to display MENU Screen.
(7) RESET Key

Press RESET Key to reset the display of a trouble after removing the cause of the trouble when the trouble display is shown on Display Screen.
(8) ENTER Key

Use ENTER Key to put in a set value or selected item.
Move the cursor to each item to be changed and press ENTER Key item by item to complete the change.
(9) + Key

Press + Key to increase the value of a changed item.
(10) - Key

Press - Key to decrease the value of a changed item.

(2) Rear Panel

(1) Connecting Terminal Strip for External Input/Output Signal

Used for inputting the schedule signals, outputting trouble signals, etc.
The size of screws is M3.5 for connection.

(2) Breaker for Welding Power Input

Used to accept three-phase power supply for welding.
The size of screws is M5 for connection.
(3) Lever for Welding Power Input Breaker

Pulling up the Lever supplies power; pushing down disconnects power supply.
(4) Welding Transformer I/O Signal Connector

Used for connecting [SENS] cable of our welding transformer.
(5) Terminal Block for Welding Power Output

Used for connecting to the input of welding transformer.
The size of screws is M6 for connection.

© Displacement Sensor Connector

Used for connecting a displacement sensor (only for the model with displacement sensor).

(7) Communication Connector

Used for communicating with Personal Computer (abbreviated as PC from now) through RS-232C or RS-485.
Before coupling with the connector, decide which mode is to be selected, RS-232C or RS-485 and confirm the communication mode. RS-232C is set at the factory shipment.
Mismatching of the communication mode setting at IPB-5000B with the mode at PC results in malfunction.

5. Installation and Connection

(1) Installation

When planning for the installation, allow at least the figured clearance on each side from the wall, as referred to the figures below, for improving the effect of heat release.
Allow at least 10 cm or more from the end of the Wiring Outlet projected at the Output Terminal Cover in the rear potion of IPB-5000B.
As IPB-5000B should be air-cooled, do not install it in a closed area.

(2) Connection

Numerals of (1) to (8) in the above figure represent the order of connection procedures in the following pages.

* 1: All items are separately sold except IPB-5000B.
*2: The Voltage Detecting Cable is used only for Constant Voltage Control, Constant Current/Constant Voltage Combination Control and Constant Power Control.
* 3: Communication Cable is used only for connecting Personal Computer (PC).
* 4: Displacement Sensor is used only for the model equipped with the Sensor.

\triangle CAUTION

0Be sure to use SK-05741 [SENS] cable when connecting IPB-5000B with Welding Transformer IT*-360*6 or IT*-780*6 (See 11.(2)(3) for [SENS] cable).

\WWARNING

Be sure to ground the equipment.
Be sure to install the Terminal Cover after wiring.
Be sure to install an earth leakage breaker of 40A rated current or more.
(1) Connecting Input Terminal Block of transformer.

Connect the Output Cable from the Input Terminal Block of the welding transformer to the Terminal block for Welding Power Output (See 4.(2)(5) on the rear panel of IPB-5000B.
The ways of connecting the Input Terminal Block of Welding Transformer are different from each other, depending on the input voltage of IPB-5000B.
Connect in such way as (1) below in the case of 200V System (200 to 240V) and as (2) in 400V System (380 to 480V).

\triangle CAUTION

(8)If the connection is done as the figure (1) below in the case of 400 V System, it may damage IPB-5000B or Welding Transformer.
(1) IPB-5000B-00-00 for use (200V System Power Supply)

Welding Transformer
Short Circuit Piece

IPB-5000B-00-01 for use
(400V System Power Supply)

(2) Connecting [SENS] Cable to transformer.

Connect [SENS] Cable from Welding Transformer I/O Signal Connector (See 4.(2)(4) in the rear panel of IPB-5000B to Welding Transformer.
(3) Connecting Start Cable

Connect Start Cable from Terminal Strip for External Input/Output Signal (See 4.(2)(1) in the rear panel of IPB-5000B to Terminal Strip for Start Switch in Welding Head.
(4) Connecting Voltage Detecting Cable

Connect the Voltage Detecting Cable in the case of using Constant Voltage Control, Constant Current/Constant Voltage Combination Control and Constant Power Control.
(5) Connecting a power supply

Connect Input Cable from Breaker for Welding Power Input (See 4.(2)(2) in the rear panel of IPB-5000B to Earth Leakage Breaker.
Connect the earth cable to PE Terminal.
(6) Connecting a necessary External I/O Signal Cable to Terminal Strip for External Input/Output Signal (See 4.(2)(1)
Prepare cables for the connection, referring to 8. External Interface.

(7) Connecting Communication Cable (only for PC connection)

The communication with PC can be performed by the use of RS-232C and RS485.

Before coupling with the connector, decide which mode is to be selected, RS232C or RS-485 and confirm the communication mode (See 6.(9)(2)(c) COMM MODE for the selection of RS-232C and RS-485).
Mismatching of the communication mode setting at IPB-5000B with the mode at PC results in malfunction.
RS-232C is set at the factory shipment.
See 10. External Communication Function for details.
(1) Connection of RS-232C

(2) Connection of RS-485

(8) Connecting Displacement Sensor (only for model with Sensor)

Install firmly Displacement Sensor not so as to rattle in reference to the figure below.
Install Displacement Sensor with insulated.

(Before Forcing)

(After Forcing)

When using the function of detecting a workpiece, adjust the installation position of Sensor for the shaft of sensor so as to retract halfway in the condition before the electrode is forced (left-side figure above).

ATTENTION

As the figure (A) below, be sure to keep Displacement Sensor perpendicular to Displacement Detecting Plate.
If Displacement Sensor is slantingly installed like (B) or (C), the life of the sensor becomes shorter.

(A)

(B)
[Abnormal]

(C)

If Sensor is pressed beyond the range of measurement, it results in malfunction.

The measured value of displacement is minus (-) or plus (+).
When NORMAL is selected for DISPLACEMENT POLARITY in the MISC screen, the counted value is plus $(+)$ in the direction of retraction of the movable part of Displacement Sensor and the value is minus (-) in the extension.
On the other hand, when REVERSE is selected, the counted value is minus (-) in the direction of retraction of the movable part of Displacement Sensor and the value is plus (+) in the extension.

6. Description of Display Screens

(1) Operation Flow

An example of the operation for the use of Welding Power Supply is shown as follows:

1. Start up IPB-5000B
2. Press MENU Key in the front panel to display MENU Screen
3. Move the cursor () to SCHEDULE Key in MENU Screen and press ENTER Key to display SCHEDULE Screen
4. Set each value of the followings
(SCH \#, TIME, UP SLOPE, DOWN SLOPE, WE1, WE2, TR \#)
5. Supply the current for welding (e.g. close Pin No. 5 at External Interface in 8.(1)(1)
6. Display monitored CURR, VOLT, POWER and RESI for verifying weld (See (4) MONITOR Screen)
7. Selection of Several Functions

Set the upper and	Set Envelope	Set Weld Time	Set Weld Stop
lower limit of CURR,	Waveform for	and Control	Function.
VOLT, POWER and	judging Good or	Voltage for	Set Displacement
RESIST for judging	No Good of weld	Precheck Current	Check Function.
Good or No Good of			
weld	Supply		
(See	(See	(See	(See
(5) COMPARATOR	(6) ENVELOPE	(7) PRECHECK	(8) CONTROL
Screen)	Screen)	Screen)	Screen)

8. Supply the current for welding

9. Stop IPB-5000B

MENU Screen

Setting of Values

Move the cursor (\square) to the number or ON (or OFF) to be set or changed and press +/- key to complete such setting as input of a number or change of ON/OFF.

IPB-5000B has various functions, which are set in the respective screens. Press MENU Key in Front Panel to display MENU screen.
At the upper left of MENU screen, each function is displayed as a menu form.
Move the cursor (\quad) to an item you desire; press ENTER key to go to the selected screen.

(3) SCHEDULE Screen

Up to 127 weld schedules can be set on IPB-5000B. Those schedules are indicated as SCHEDULE \#1 to \#127.
The screen is used to set the SCHEDULE No., length of weld time, weld current and so on.

Move the cursor (\quad) to SCHEDULE and press ENTER key to display SCHEDULE Screen as follows.
The control method can be set for WE1 and WE2 respectively, and the waveform of a selected control method is displayed as follows. Also, if the waveforms selected for each WE1 and WE2 are different each other, two different waveforms also are displayed.
(1) Constant Current Control

As the following, each item of (a) to (f) is described.
(a) SCH. \#

It denotes No. of weld SCHEDULE. 127 weld schedules as SCHEDULE \#1 to \#127 can be set on IPB-5000B.
(b) Time

Time period of each movement in welding is set at the dimension of ms .
Refer to 9. Timing Chart on the relation of each period.

SQD / Squeeze Delay Time	Period of time added to the Squeeze Time only once after start-up during repeated operation
SQZ / Squeeze Time	Period of time until proper squeeze is applied to workpiece
WE1 / Weld 1 Time	The first weld time for which weld current is supplied
COOL / Cooling Time	Period during which weld current is suspended between WE1 and WE2
WE2 / Weld 2 Time	The second weld time for which weld current is supplied
HOLD / Hold Time	Period of time to hold workpiece after ceasing weld current

(c) CURR (Note

Indicates the value of current for control. Set it for WE1 and WE2 respectively.
(d) VOLT (Note

Indicates the value of voltage for control. Set it for WE1 and WE2 respectively.
(e) POWER (Note

Indicates the value of power for control. Set it for WE1 and WE2 respectively.

(f) NEXT

Displays SCHEDULE (2/2) Screen.
Note)Even if numbers are input at all the input boxes of control methods, CURR, VOLT and POWER, the numbers other than the selected control method do not work.

(2) Constant Voltage Control

(3) Constant Current/Constant Voltage Combination Control

(4) Constant Power Control

(5) SCHEDULE (2/2) Screen

As the following, each item of (a) to (e) is described.
(a) CONTROL

Sets a control method for WE1 and WE2 respectively. CURR: Constant Current Control VOLT: Constant Voltage Control COMB: Constant Current/Constant Voltage Combination Control POWER-H: Constant Power Control (HIGH Range) POWER-L: Constant Power Control (LOW Range)
(b) UP SLOPE

Set the upslope time (to increase the weld current gradually) (See 9. Timing Chart). Set it for WE1 and WE2 respectively.
(c) DOWN SLOPE

Set the downslope time (to decrease the weld current gradually) (See 9. Timing Chart). Set it for WE1 and WE2 respectively.
(d) TRANS\#

Indicates the number of a transformer.
Works only at the time when Transformer Selector MA-650A is used.
(e) PREV

Displays SCHEDULE (1/2) Screen.

(4) MONITOR Screen

In this screen, you can confirm the working condition during welding. The monitored data, that is, Current, Voltage, Power and Resistance in every schedule are displayed.
Current is indicated in yellow solid line, Voltage is cyan, Power is green and Resistance is magenta.
Move the cursor () to Function Key ((a) to (f)) to be selected and press ENTER Key to display the desired screen. Press one more time ENTER Key to erase the displayed data.
[When displaying data of two or less]

[When displaying data of three or more]

(a) CURR

The waveform of Current can be displayed.
(b) VOLT

The waveform of Voltage can be displayed.
(c) POWER

The waveform of Power can be displayed.
(d) RESI

The waveform of Resistance can be displayed.
(e) SETUP

The screen of SETUP can be displayed.
(f) TOTAL COUNT

The mode of a counter can be displayed. For details, see (9)(4)(e) COUNTER.
(g) DISPLC

The waveform of Displacement can be displayed.
(Only the model equipped with Displacement Sensor works. The waveform is upward displayed in the force-applying direction of Sensor and oppositely, downward in the force-releasing direction.)
(h) Pulse Width Monitor

The mean value of pulse widths of the supplied pulse current is displayed in the percentage to 100% of the pulse width at the full wave.
Use Pulse Width Monitor as an indication.
(i) Weld Time

The period during which weld current is supplied is displayed.
Note) IPB-5000B holds the monitored value of all schedules (only the latest one for waveform) while the power is on. When the power is turned off, all values are cleared.
[SETUP Screen]
(d) \qquad
e)
(a) CURRENT

Selects PEAK/RMS of Current Value.
(b) VOLTAGE

Selects PEAK/RMS of Voltage Value.
(c), (d)

Selects the waveform to be displayed from 3 types.
POWER: Power Waveform
RESISTANCE: Resistance Waveform
DISPLACEMENT: Displacement Waveform (only for Sensor equipped)
(e) BACK

Returns to MONITOR Screen.

(5) COMPARATOR Screen

Set the upper and lower criterion of Current, Voltage, Power and Resistance for judging "Good" or "No Good" weld. If the monitored value is inside the criterion, Good is determined. If it is outside, No Good is determined.
If the monitored value equals to the criterion, Good is determined.
If No Good is determined, an error signal of "NG" or "Caution" is output, so it can be used to activate an alarm buzzer, alarm lamp, and so on.

(a) SCH. \#

Input the No. of SCHEDULE to monitor (Schedule to be set).
(b) CURR

Set the upper limit (H) and lower limit (L) of the weld current for each of WE1 and WE2. The setting range is 0.00 kA to 9.99 kA .
Switching between PEAK and RMS is possible. If the upper limit (\mathbf{H}) is set to 9.99 kA and the lower (L) to 0.00 kA , no monitoring is done.
(c) VOLT

Set the upper limit (H) and lower limit (L) of the weld voltage for each of WE1 and WE2. The setting range is 0.00 V to 9.99 V .
Switching between PEAK and RMS is possible. If the upper limit (H) is set to 9.99 V and the lower (\mathbf{L}) to 0.00 V , no monitoring is done.

(d) POWER

Set the upper limit (H) and lower limit (L) of the weld power for each of WE1 and WE2. When POWER-H is set for CONTROL, the setting range is 00.0 kW to 99.9 kW . If the upper limit (\mathbf{H}) is set to 99.9 kW and the lower (L) to 00.0 kW , no monitoring is done. When POWER-L is set for CONTROL, the setting range is 0.00 kW to 9.99 kW . If the upper limit (H) is set to 9.99 kW and the lower (L) to 0.00 kW , no monitoring is done.
(e) RESIST

Set the upper limit (H) and lower limit (L) of the weld resistance for each of WE1 and WE2. The setting range is $00.0 \mathrm{~m} \Omega$ to $99.9 \mathrm{~m} \Omega$. If the upper limit (H) is set to $99.9 \mathrm{~m} \Omega$ and the lower (\mathbf{L}) to $00.0 \mathrm{~m} \Omega$, no monitoring is done.

Note) IPB-5000B holds the monitored value of all schedules (only the latest one for waveform) while the power is on. When the power is turned off, all values are cleared.

(6) ENVELOPE Screen

Here, the envelope waveform is prepared.
The function of Envelope is to draw a waveform (here, calling Envelope Waveform) having allowable criteria based on a standard waveform (an average actual weld waveform) and compare a monitored actual weld waveform with the Envelope Waveform in order to judge "Good" or "No Good" weld.
If the measured value is inside the Envelope Waveform, "Good" is determined. If it is outside, "No Good" is determined. If the monitored value equals to the Envelope Waveform value, "Good" is determined.
If No Good is determined, an error signal of "NG" or "Caution" is output, so it can be used to activate an alarm buzzer, alarm lamp, and so on.

(a) SCH. \#

Input No. of SCHEDULE to set the schedule.
(b) TYPE

Indicates the type of selected standard waveforms, CURR, VOLT, POWER, RESIST and DISPLC. Only one standard waveform can be selected among the following 8 types of waveform.
When setting the envelope based on the standard waveform from the monitor, flow the current before setting.

Waveform	How to Select
Set Current Waveform	Press NEW Button, next press SCH(C) Button on the displayed screen. (From now on, the word of Button is omitted here.)
Set Voltage Waveform	NEW, next SCH(V)
Set Power Waveform	NEW, next SCH(P)
Monitored Current Waveform	NEW, next MON, next CURR
Monitored Voltage Waveform	NEW, next MON, next VOLT
Monitored Power Waveform	NEW, next MON, next POWER
Monitored Resistance Waveform	NEW, next MON, next RESIST
Monitored Displacement Waveform	NEW, next MON, next DISPLC (only for model with Displacement Sensor)

(c) INTERVAL

Set the period of Envelope Waveform.
(d) OFFSET

Set the upper and lower limit of Envelope Waveform.
(e) ON/OFF

Set the activation or inactivation of the function.
ON: Envelope function works
OFF: Envelope function does not work
(f) NEW

Selects a standard waveform.
(g) EDIT

Changes INTERVAL, OFFSET or ON/OFF one another.
(h) COPY

Makes a copy of the data of Envelope Waveform.
Move the cursor () to COPY Button when COPY Button is displayed and press ENTER Key to show PASTE Button.
After changing SCH. \# to be copied (source) into new SCH. \# to be overwritten (destination), move the cursor () to PASTE Button and press ENTER Key to copy the data of Envelope Waveform.

How to Draw Standard Waveform and ENVELOPE Waveform

Here, the way how standard waveforms and ENVELOPE waveforms are drawn is described.
(1) Move the cursor () to ENVELOPE on MENU Screen (selecting) and press ENTER Key.
(The right-hand screen is described of Constant Current Control.)

The screen for drawing Envelope Waveform is prepared.

When modifying the existing waveforms, take steps (1), (5), ©, (7) and ${ }^{8}$ ($(2$ to (4) is omitted).

(2) Select NEW Button and press ENTER Key to draw a standard waveform.

(3) Select MON Button and press ENTER

Key to draw a standard waveform from a monitored waveform.

(4) Select CURR Button and press ENTER Key to draw the standard waveform of a current waveform. In the case of Voltage, Power or Resistance, select each button situated on the right side of CURR button and press ENTER Key.

(5) Select EDIT Button and press ENTER Key to draw Envelope Waveform.

(6) INTERVAL sets the time period from the beginning to end of Envelope waveform.
OFFSET sets a plus (+) and minus (-) allowable value.
Concerning ON/OFF, ON should always be selected when using Envelope function. If OFF is selected, no Envelope function works.
After setting the above items, select RETURN Button and press ENTER Key.

(7) Select WRITE Button and press ENTER Key to store the setting.

(8) Here, in this step, Envelope Waveform has been set.

When displaying the monitored screen, Envelope Waveform will appear.

(7) PRECHECK Screen

Set the period of a weld time and a control voltage for Resistance PRECHECK in this screen.
The function of Resistance PRECHECK is to flow lower current in Constant Voltage Control method just before supplying the weld current and see if workpieces to be welded are correctly positioned by the use of the measured value of current then.
(a) TIME

Set a weld time. If the weld time equals to 0.0 ms , no PRECHECK is done.
(b) VOLT

Set a control voltage.
(c) COMP CURR HIGH/LOW

HIGH: Set the upper limit of current for PRECHECK.
LOW: Set the lower limit of current for PRECHECK.
(d) CURR (MONITOR)

Displays the monitored current at PRECHECK current supplying.
Note) IPB-5000B holds the monitored value of all schedules (only the latest one for waveform) while the power is on. When the power is turned off, all values are cleared.

(8) CONTROL Screen

Depict the screens of setting Weld Stop Function, Weld Time Comparator, etc.
(a) INPUT

Selects the type of Weld Stops.
OFF: External Input, WE1 Stop Input and Interrupt Input are effective.
DISPLC: Weld Stop works at the set displacement value (only for Sensor equipped).
CURR: Weld Stop works at the set current value.
VOLT: Weld Stop works at the set voltage value.
(b) CONDITION

Input the value depending on the setting at (a).
OFF: Not displayed. DISPLC: Input the value of displacement.
CURR: Input current value. VOLT: Input voltage value.
(c) HI

Input the upper limit of Weld Time.
(d) LOW

Input the lower limit of Weld Time.
(e) COMP

Input the upper limit (HI)/ lower limit (LOW) of a final displacement.
(Works only for Model equipped with Displacement Sensor. When using the function of Displacement Sensor, the displacement from Weld Start to the end of DELAY TIME is measured to judge the upper and lower limit.)

(f) DELAY TIME

Sets Delay Time, the time period from Weld Stop to the time when a final displacement is measured (only for Sensor equipped). The setting range is from 0 to the time period of HOLD TIME (See (3)(1)(b)).

(g) WORK DETECT

Input the upper limit (HI) / lower limit (LOW) value at the time of detecting workpiece (only for Sensor equipped).
No detection of workpiece is done in the case that " 0 " is set to both the upper limit and lower limit.
For the detection of workpiece, the position of Sensor where the workpiece is set between electrodes is taken as the base point. The larger displacement without workpiece than the displacement with workpiece is detected to judge whether or not the workpiece is set.

(h) MONITOR

Displays the displacement at the time of detecting workpiece, the time of the end of squeeze time (only for Sensor equipped).

Note) IPB-5000B holds the monitored value of all schedules (only the latest one for waveform) while the power is on. When the power is turned off, all values are cleared.

(9) STATUS Screen

Change the initial setting of IPB-5000B here in this screen.
According to customer's preference, precise setting can be obtained.

(1) STATUS (1/2) Screen

(a) WELD TRANS

Set a transformer.
Select it between IT*-360*6 and IT*-780*6.
Since IT*-142*6 is used for adjustment, do not select it.
("*" indicates any letter of the alphabet A to Z.)
(b) WELD TIME

Set whether or not upslope/downslope is included in WELD TIME.
EXCLUDE SLOPE: upslope/downslope is not included
INCLUDE SLOPE: upslope/downslope is included
(c) START SIG. TIME

Set a delay time defined as the time period which elapses from an input of Start Signal to a beginning of weld sequence.
The setting can eliminate the chattering movement of a start switch.
Select the set value among $20 \mathrm{~ms}, 10 \mathrm{~ms}, 5 \mathrm{~ms}$ and 1 ms .
If a chattering-proof switch can be used, shortest Delay Time can be obtained.
(d) START SIG. HOLD

A self-sustaining timing at starting can be selected.
SQ HOLD: Self-sustaining action works from the starting of squeeze sequence
WE HOLD: Self-sustaining action works from the starting of weld sequence
NO HOLD: NO self-sustaining action works. Input a start signal until the end of sequence.
(e) SCHEDULE\#

Fixes the method of how to select a schedule.
EXT. (NP): Select a schedule by closing a schedule-selecting terminal on Rear Panel
EXT. (P): Select a schedule by closing a schedule-selecting terminal and a parity terminal on Rear Panel.
PANEL: Select a schedule on Front Panel.
Input a parity signal so that the total number of a closed schedule-selecting terminal and a closed parity terminal may be odd.
(f) END SIG. TIME

Set the time period during which End signal or GOOD signal is output.
10/100ms: Outputs End signal for 10 ms or 100 ms .
HOLD: Outputs End or GOOD signal for the period during which 2ND STAGE terminal is closed. But if it is closed for 10 ms or less, the signals are output for 10 ms . If it is longer than 10 ms , they are output for the closed period of 2ND STAGE terminal.
(g) MONITOR MODE

Set the mode of a displayed monitor value.
EXCLUDE SLOPE: Slope period not included.
INCLUDE SLOPE: Slope period also included.
(h) CALCULATION MODE

Set the way of calculating a monitored value.
NORMAL: Set NORMAL usually.
FAST: If the takt time is needed to shorten, the shorter calculation time is obtained when FAST is set.
(2) STATUS (2/2) Screen

(a) TRANS SCAN MODE

Set the scan mode of transformers.
Does not work in Model with Displacement sensor.
OFF: No scan mode is used.
ON: A SCHEDULE is performed.
1-2: Consecutive 2 SCHEDULE's are performed.
1-3: Consecutive 3 SCHEDULE's are performed.
1-4: Consecutive 4 SCHEDULE's are performed.
1-5: Consecutive 5 SCHEDULE's are performed.
Select a scan mode of ON, 1-2, 1-3, 1-4 or 1-5 for setting each scan mode when the transformer selector MA-650A is connected.
Concerning the timing chart by settings, refer to 9.(8) Behavior in TRANS SCAN MODE.
(b) COMM CONTROL

Selects a communication function.
OFF: \quad No communication
DATA OUTPUT: One-way communication
BI-DIRECTION: Both-way communication
(c) COMM MODE

Selects a communication mode.
RS-232C: Communication by RS-232C
RS-485: Communication by RS-485
(d) COMM UNIT\#

Input No. of an equipment (ID\#).
The range is 00 to 31 .
(e) COMM SPEED

Selects a communication speed.
9600: Communication at 9600 bps
19200: Communication at 19200 bps
38400: Communication at 38400 bps

(f) NO CURR MONITOR START

Set the starting time (Period for Neglect) of no-current supplying monitor.
No-current supply is not detected during the Period for Neglect from the start of current supply.
(g) PW MONITOR START

Set the starting time (Neglect) of pulse width monitor.
No pulse width monitor is performed during the Neglect period from the start of current supply.
(h) NG OUTPUT

Set the mode of NG terminal.
NORMALLY CLOSE: Open at the occurrence of NG.
NORMALLY OPEN: Closed at the occurrence of NG.
(i) READY OUTPUT

Select the mode of READY terminal.
WELD ON: Ready at Weld On
POWER ON: Ready at Power On
(j) ERROR

Displays (3) ERROR SETTING Screen.
(k) MISC

Displays © MISC Screen.
(I) PREV

Displays (1) STATUS (1/2) Screen.

(3) ERROR SETTING Screen

The signals output at the occurrence of an error (NG Signal/Caution Signal) can be set item by item.
(a) OFF/ON

OFF: NG Signal is output.
The input of Start Signal is not accepted at the occurrence of NG.
ON: Caution Signal is output.
The input of Start Signal is accepted even at the occurrence of Caution.

(b) BACK

Displays (2) STATUS (2/2) Screen of the previous page.

(4) MISC Screen

MISC	[Repovi
TRANS NAME	MAX CURR
IT*-360*6/IT*-780*6	4.00/6.00 kA
(a)-USER (1.00-9.99)	8.00 kA
(b) -MIN CURR	NOPMML
(c) - DISPLACEMENT SENSOR STEP	01.0 um
(d)-DISPLACEMENT POLARITY	NOPMAL
(e) - COUNTER	TOTAL
(f) _-PRESET (TOTAL/GOOD)	000000
(g) ——PRESET (WORK)	000000
(h) -PRESET (WELD)	00
RESET] [D-CHK	Back
	(k)

(a) USER (1.00-9.99)

It is for testing. It cannot be used.
(b) MIN CURR

Set the minimum current.
NORMAL: Settable from 10% of full scale.
LOW: Settable from 2.5% of full scale.
Note: You can set lower current in LOW mode, but note that it may exceed the range of the setting accuracy when the setting is 10% of full scale or less.
(c) DISPLACEMENT SENSOR STEP

Input the resolution of Displacement Sensor.
Ex.)
GS-1830A, GS-1813A, LGK-110: $1.0 \mu \mathrm{~m}$
ST1278: $\quad 0.5 \mu \mathrm{~m}$
(d) DISPLACEMENT POLARITY

Set the polarity of displacement.
NORMAL: Set the force-applying direction as plus.
REVERSE: Set the force-applying direction as minus.

(e) COUNTER

Set the mode of Counter.
TOTAL: Count-up (increment of +1) is done despite the result of the judgment in monitoring when the current is supplied.

Judgment in Monitor	Counting Manner
GOOD	Count-up
CAUTION	Count-up
NG	Count-up

GOOD: Count-up is done if the judgment is GOOD in current-supplied monitoring.

Judgment in Monitor	Counting Manner
GOOD	Count-up
CAUTION	No Count-up
NG	No Count-up

WORK: Count-up is not done if the judgment is NG in current-supplied monitoring.

Judgment in Monitor	Counting Manner
GOOD	WELD Counter counts-up. WORK Counter counts-up (increment of +1) when WELD Counter reached the set value.
CAUTION	WELD Counter counts-up. WORK Counter counts-up (increment of +1) when WELD Counter reached the set value.
NG	WELD Counter does not count-up. WELD Counter is reset to 0 (zero) when NG is reset. WORK Counter does not count-up.

Note: The period for retaining the memory of counted numbers is approximately 10 days since the day when a power supply is turned off at latest.

(f) PRESET (TOTAL/GOOD)

Input the preset value of TOTAL/GOOD Counter.
(g) PRESET (WORK)

Input the preset value of WORK Counter.
(h) PRESET (WELD)

Input the preset value of WELD Counter.
(i) RESET

Resets the count.
(j) D-CHK

Checks the operation of Displacement Sensor. The amount of displacement is shown on the right side of this button.
(k) BACK

Displays (2) STATUS (2/2) Screen of the previous page.

7. Basic Operation

The example of a basic operation is described, using a transformer IT*-780*6 and a control method of Constant Current Control.
(1) Connect correctly Welding Transformer IT*-780*6 and peripheral equipments to IPB-5000B, referring to the connection way (5. Installation and Connection).
(2) Turn on the Breaker.

CAUTION
Check that the display screen and lamps are turned on normally.

(3) Press MENU key on Front Panel to display MENU Screen.
Move the cursor () to STATUS and press ENTER Key.

(4) STATUS Screen is displayed.

Set the function. Move the cursor (to the desired item and press +/- key to select the function.
Set IT*-780*6 to WELD TRANS.

(5) Press MENU Key on Front Panel to display MENU Screen.
Move the cursor (\quad) to SCHEDULE and press ENTER Key to display SCHEDULE Screen.
Move the cursor (\quad) to each place and set the values of the table below to each place by $+/-$ Key.
Press NEXT Button to set the values of UP SLOPE and DOWN SLOPE in the following screen.

Item	Value	Item	Value	
SCH. \#	15	UP SLOPE at WE1	2 ms	
SQD	0 ms	UP SLOPE at WE2	2 ms	
SQZ	400 ms	DOWN SLOPE at WE1	5 ms	
WE1	20 ms	DOWN SLOPE at WE2	5 ms	
COOL	2 ms	CURR at WE1	1 kA	
WE2	20 ms	CURR at WE2	2 kA	
HOLD	10 ms			

(6) For the test of welding, press MENU Key on Front Panel, select MONITOR and press ENTER Key. MONITOR Screen is displayed.

(7) Press WELD Key on Front Panel to light up WELD Lamp (LED).
(8) Set ON (Closed circuit) to WELD ON/OFF on Connecting Terminal Strip for External Input/Output Signal at Rear Panel.
Make sure that the letter of READY on the upper right of Screen is green-lighted.

(9) Set ON (Closed circuit) to SCH1, SCH2, SCH4 and SCH8 on Connecting Terminal Strip for External Input/Output Signal at Rear Panel for setting SCH. \#015.
(10) Set ON (Closed circuit) to 2ND STAGE Start Input to begin testing the weld. The squeeze signal is output, and then the weld head begins to squeeze for the weld.

As the figure on the right is displayed, check that the weld schedule is correctly set.

4 WARNING

When confirming the operation, check that SQZ Time (Squeeze Time) is sufficient.
If weld current flows before the welding electrode force becomes sufficient, spatters are produced.

8. External Interface

(1) Connection Diagram for External Input/Output Signals

CAUTION

Use the shielded for the external input/output signals and connect the shielded line to the COM terminal $(6,15,18,22$, or 34$)$.
(1) When contacts on PLC are used as input signal

(2) When NPN transistor (sink type) on PLC is used as input signal

(3) When PNP transistor (source type) on PLC is used as input signal

(4) When solenoid valves are activated by the use of an external power supply

(5) When solenoid valves are activated by the use of an internal power supply

INT. 24V
SOL POWER
SOL 1
SOL 2
SOL COM

(2) External Input/Output Signals

The contact input method is described as follows:

Pin No.	Description
2	24V DC Output Terminal. When contacts or NPN transistor (sink type) on PLC is used as an input signal (for start or selecting Schedule, etc.), connect Pin 1 to Pin 2. Note: Do not use Pin 1 other than for connecting to Pin 2 and Pin 3 or connecting to Pin 31 to activate a solenoid valve. If so, it may result in a trouble.
$\mathbf{2}$	When contacts or NPN transistor (sink type) on PLC is used as an input signal (for start or selecting Schedule, etc.), connect Pin 2 to Pin 1. When PNP transistor (source type) on PLC is used as an input signal (for start or selecting Schedule, etc.), connect Pin 2 to COM Terminal on PLC.
$\mathbf{3}$	Normally, connect Pin 3 to Pin 1. When opening Pin 3, a trouble display "Operation Stop" comes out and the operation stops. When the sequence is required to stop on the way while employing the start in a self-sustaining manner, open this Pin.
$\mathbf{4}$	1ST STAGE Input Terminal. Closing of this Pin makes SOL1 Terminal of Pin 32 close. As the current-supplying sequence does not start, the adjustment or check of a squeeze location can be done. When closing 2ND STAGE Terminal at this location, the weld at the optimum squeeze location can be obtained.

Pin No.	Description
5	2ND STAGE Input Terminal. Closing the Pin makes the sequence start. When the sequence works, SOL2 Terminal on Pin 33 is closed.
6	COM Terminal. Internally connected to GND Chassis.
7 to 13	Schedule Input Terminal. $7=$ Schedule 1, $\mathbf{8}=$ Schedule 2, $9=$ Schedule 4, $10=$ Schedule 8, 11 = Schedule 16, $12=$ Schedule 32, $13=$ Schedule 64, When the select method of Schedule is External Schedule Select Method, they work. The sum of Schedule No. of closed Pins is corresponding to the selected Schedule No. (Refer to (3) Schedule No. and Schedule Select Terminal.)
14	Parity Input or WE1 STOP Input Terminal. The setting of SCHEDULE\# in 6.(9)(1)STATUS (1/2) Screen allows the function to be switched. When EXT. (P) is selected in SCHEDULE\#, Parity Input Terminal. This Pin makes it possible to detect a trouble caused by the breaking of a Schedule Select Signal wire. Select Pins so that the sum of the numbers of closed Schedule Select Signal wires and a Parity Signal wire may always be odd. (Refer to (3) Schedule No. and Schedule Select Terminal.) When EXT. (NP) or PANEL is selected in SCHEDULE\#, The function is changed in dependence on the selection of WELD STOP (INPUT) at 6.(8) CONTROL Screen. * In the case of OFF selected at INPUT, It is WE1 Stop Input Terminal. When this Pin is closed while the sequence works at WE1 (W1), the sequence skips to COOL (CO). * In the case of DISPLC**, CURR and VOLT selected at INPUT, This terminal does not work. ** (only for Displacement Sensor equipped)
15	COM Terminal. Internally connected to GND Chassis.
16	Weld ON/OFF Input Terminal. Closed circuit is for Weld ON and Open circuit for Weld OFF. As weld current does not flow even in the activated sequence if the Pin is open, it can be used at starting for trial. Note: When the Pin is open in the process of sequence (including the End signal and the screen display time), the monitor value is not displayed. Except in an emergency, open the Pin after the End signal and the screen display time are complete (see 9.(1) Fundamental Sequence).
17	Error and Caution Reset Input Terminal. When the Pin is closed after eliminating a cause of NG or Caution, a display of NG or Caution is reset.
18	COM Terminal. Internally connected to GND Chassis.
19	Count Reset Input Terminal. Close the Pin when resetting a counter.

Pin No.	Description
20	Interrupt Input Terminal. The function is changed in dependence on the selection of WELD STOP (INPUT) at 6.(8)CONTROL Screen. * In the case of OFF selected at INPUT, When this Pin is closed while the sequence works at WE1 (W1), COOL (CO) and WE2 (W2), the sequence skips to HOLD. * In the case of DISPLC**, CURR and VOLT selected at INPUT, This terminal does not work. ** (Only for Displacement Sensor equipped)
21	Program Protection Input Terminal. If the Pin is closed, the condition of settings cannot be changed. In order to make the settings effect, once turn off the power supply.
22	COM Terminal. Internally connected to GND Chassis.
23	GOOD Signal Output Terminal. If it is determined that the measured value is inside the range set in MONITOR Screen after a weld sequence has ended, the Pin keeps closed for the certain period. The period of closing can be selected among HOLD, 10 ms and 100 ms . The rated capacity of a contact is 24 V DC 20 mA (Semi-conductor switch used).
24	NG Signal Output Terminal. The signal is output when the measured value goes out of the range set in COMPARATOR, PRECHECK and ENVELOPE Screen after a weld sequence has ended or when a trouble occurs in an operation. (An error output signal, NG or Caution can be switched at the setting in 6.(9)(3ERROR SETTING Screen.) The operation stays stopped at the occurrence of an error until the reset signal is input. The output manner can be selected at the setting of NG OUTPUT in 6.(9)(2STATUS (2/2) Screen. NORMALLY CLOSE The Pin is closed with the power turned on, but becomes open with an error occurring. NORMALLY OPEN The Pin is closed with an error occurring. The rated capacity of a contact is 24 V DC 20 mA (Semi-conductor switch used).
25	END Signal Output Terminal. After the sequence has ended, the Pin is closed for the certain period. The period of closing can be set to HOLD, 10 ms or 100 ms . The signal also is output when the sequence is made operate in the condition of WELD OFF. The rated capacity of a contact is 24 V DC 20 mA (Semi-conductor switch used).
26	CAUTION Signal Output Terminal. When ON is set at ERROR SETTING Screen, NG Signal can be switched to Caution Signal. The Pin is closed after the weld sequence has ended. Even if Caution Signal is generated, the welding operation can be continued. Input a reset signal or start signal for releasing Caution Signal. The rated capacity of a contact is 24 V DC 20 mA (Semi-conductor switch used).

Pin No.	Description			
$\mathbf{2 7}$	COUNT-UP Output Terminal. The Pin is closed when COUNT-UP reaches the set pre-set count value. Input Count Reset Signal for releasing the output of COUNT-UP. The rated capacity of a contact is 24V DC 20 mA (Semi-conductor switch used).			
	READY Output Terminal. The output manner can be selected at the setting of READY OUTPUT in 6.(9) (2STATUS (2/2) Screen. WELD ON			
$\mathbf{2 8}$	Closed at the time when weld current is ready for being supplied. Open at WELD OFF or in the occurrence of NG. PowER ON			
\mathbf{l} Closed in the occasion when the power supply of IPB-5000B is				
turned on.				
The rated capacity of a contact is 24V DC 20 mA (Semi-conductor				
switch used).		$	$	COMMON Terminal for Output.
:---				
Shared commonly for GOOD, NG, END, CAUTION, COUNT UP and				
READY.				

(3) Schedule No. and Schedule Select Terminals

Schedule No.: SCHEDULE\#					- : Closed		Blank: Open	
SCHEDULE\#	SCH 1	SCH 2	SCH 4	SCH 8	SCH16	SCH32	SCH64	PARITY
1								\bigcirc
1	\bigcirc							
2		\bigcirc						
3	\bigcirc	\bigcirc						\bigcirc
4			\bigcirc					
5	-		\bigcirc					\bigcirc
6		\bigcirc	\bigcirc					\bigcirc
7	\bigcirc	\bigcirc	\bigcirc					
8				\bigcirc				
9	\bigcirc			\bigcirc				-
10		\bigcirc		\bigcirc				\bigcirc
11	\bigcirc	\bigcirc		\bigcirc				
12			\bigcirc	\bigcirc				-
13	\bigcirc		\bigcirc	\bigcirc				
14		\bigcirc	\bigcirc	\bigcirc				
15	-	\bigcirc	-	\bigcirc				\bigcirc
16					\bigcirc			
17	\bigcirc				\bigcirc			\bigcirc
18		\bigcirc			\bigcirc			\bigcirc
19	\bigcirc	\bigcirc			\bigcirc			
20			\bigcirc		\bigcirc			\bigcirc
21	\bigcirc		\bigcirc		\bigcirc			
22		\bigcirc	\bigcirc		\bigcirc			
23	\bigcirc	\bigcirc	-		\bigcirc			\bigcirc
24				\bigcirc	\bigcirc			\bigcirc
25	\bigcirc			\bigcirc	\bigcirc			
26		\bigcirc		\bigcirc	\bigcirc			
27	\bigcirc	\bigcirc		\bigcirc	\bigcirc			\bigcirc
28			\bigcirc	\bigcirc	\bigcirc			
29	\bigcirc		\bigcirc	\bigcirc	\bigcirc			\bigcirc
30		\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc
31	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
32						\bigcirc		
33	\bigcirc					\bigcirc		\bigcirc
34		\bigcirc				\bigcirc		\bigcirc
35	\bigcirc	\bigcirc				\bigcirc		
36			\bigcirc			\bigcirc		\bigcirc
37	\bigcirc		\bigcirc			\bigcirc		
38		\bigcirc	\bigcirc			\bigcirc		
39	\bigcirc	\bigcirc	\bigcirc			\bigcirc		\bigcirc
40				\bigcirc		\bigcirc		\bigcirc
41	\bigcirc			\bigcirc		\bigcirc		
42		\bigcirc		\bigcirc		\bigcirc		
43	\bigcirc	\bigcirc		\bigcirc		\bigcirc		-

Schedule No.: SCHEDULE\#
O: Closed
Blank: Open
SCHEDULE\# SCH 1 SCH 2 SCH 4 SCH 8 SCH16 SCH 32 SCH64 PARITY

44			\bigcirc	\bigcirc		\bigcirc		
45	\bigcirc		\bigcirc	\bigcirc		\bigcirc		\bigcirc
46		\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc
47	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		
48					\bigcirc	\bigcirc		\bigcirc
49	\bigcirc				\bigcirc	\bigcirc		
50		\bigcirc			\bigcirc	\bigcirc		
51	\bigcirc	\bigcirc			\bigcirc	\bigcirc		\bigcirc
52			\bigcirc		\bigcirc	\bigcirc		
53	\bigcirc		\bigcirc		\bigcirc	\bigcirc		\bigcirc
54		\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc
55	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc		
56				\bigcirc	\bigcirc	\bigcirc		
57	\bigcirc			O	\bigcirc	\bigcirc		\bigcirc
58		\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc
59	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		
60			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
61	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
62		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
63	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		O
64							\bigcirc	
65	\bigcirc						\bigcirc	\bigcirc
66		\bigcirc					\bigcirc	\bigcirc
67	\bigcirc	\bigcirc					\bigcirc	
68			\bigcirc				\bigcirc	\bigcirc
69	\bigcirc		\bigcirc				\bigcirc	
70		\bigcirc	\bigcirc				\bigcirc	
71	\bigcirc	\bigcirc	\bigcirc				\bigcirc	\bigcirc
72				\bigcirc			\bigcirc	\bigcirc
73	\bigcirc			\bigcirc			\bigcirc	
74		\bigcirc		\bigcirc			\bigcirc	
75	\bigcirc	\bigcirc		\bigcirc			\bigcirc	\bigcirc
76			\bigcirc	\bigcirc			\bigcirc	
77	\bigcirc		\bigcirc	\bigcirc			\bigcirc	\bigcirc
78		\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc
79	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	
80					\bigcirc		\bigcirc	\bigcirc
81	\bigcirc				\bigcirc		\bigcirc	
82		\bigcirc			\bigcirc		-	
83	\bigcirc	\bigcirc			\bigcirc		\bigcirc	\bigcirc
84			\bigcirc		O		\bigcirc	
85	\bigcirc		\bigcirc		\bigcirc		\bigcirc	\bigcirc
86		\bigcirc	\bigcirc		\bigcirc		\bigcirc	-
87	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc	
88				\bigcirc	\bigcirc		\bigcirc	

Schedule No.: SCHEDULE\#

- : Closed

Blank: Open
SCHEDULE\# SCH 11 SCH 2 SCH 4 SCH 8 SCH16 SCH32 SCH64 PARITY

89	\bigcirc			\bigcirc	\bigcirc		\bigcirc	\bigcirc
90		\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc
91	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc	
92			\bigcirc	\bigcirc	-		\bigcirc	\bigcirc
93	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	
94		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
95	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc
96						-	\bigcirc	\bigcirc
97	\bigcirc					-	\bigcirc	
98		\bullet				-	\bigcirc	
99	\bigcirc	\bigcirc				-	\bigcirc	\bigcirc
100			\bigcirc			-	\bigcirc	
101	\bigcirc		\bigcirc			-	\bigcirc	\bigcirc
102		\bigcirc	\bigcirc			-	\bigcirc	\bigcirc
103	\bigcirc	\bigcirc	\bigcirc			-	\bigcirc	
104				\bigcirc		-	\bigcirc	
105	\bigcirc			\bigcirc		-	\bigcirc	\bigcirc
106		\bigcirc		\bigcirc		-	\bigcirc	\bigcirc
107	\bigcirc	\bigcirc		\bigcirc		-	\bigcirc	
108			\bigcirc	\bigcirc		-	\bigcirc	\bigcirc
109	\bigcirc		\bigcirc	\bigcirc		-	\bigcirc	
110		\bigcirc	\bigcirc	\bigcirc		-	\bigcirc	
111	\bigcirc	\bigcirc	\bigcirc	\bigcirc		-	\bigcirc	\bigcirc
112					-	-	\bigcirc	
113	\bigcirc				\bigcirc	-	\bigcirc	\bigcirc
114		\bigcirc			-	-	\bigcirc	\bigcirc
115	\bigcirc	\bigcirc			-	-	\bigcirc	
116			\bigcirc		\bigcirc	-	\bigcirc	\bigcirc
117	\bigcirc		\bigcirc		-	-	\bigcirc	
118		\bigcirc	\bigcirc		\bigcirc	-	\bigcirc	
119	\bigcirc	\bigcirc	\bigcirc		-	-	\bigcirc	\bigcirc
120				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
121	\bigcirc			\bigcirc	\bigcirc	-	\bigcirc	
122		\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
123	\bigcirc	\bigcirc		\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
124			\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	
125	\bigcirc		\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
126		\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
127	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	

9. Timing Chart

(1) Fundamental Sequence

Symbol:

SQD: Squeeze Delay Time
RC: Resistance Pre-check Time
U1: Upslope 1 Time
D1: Downslope 1 Time
U2: Upslope 2 Time
D2: Downslope 2 Time

SQZ: Squeeze Time
CP: Resistance Judgment Time (1ms)
W1: 1st Weld Time
CO: Cool Time
W2: 2nd Weld Time
HO: Hold Time
a: Sum of the period set at START SIG. TIME and the period for preparing the supply of weld current (0.4 ms max.)
b: Monitored Value Computing Time
Changes in dependence on Monitor Value Calculation Mode (CALCULATION MODE at 6.(9)ⓈTATUS(1/2)Screen) and Communication Setting (COMM CONTROL and COMM SPEED at 6.(9)(2STATUS(2/2)Screen).
(1) In the case of OFF or BI-DIRECTION at COMM CONTROL,

Calculation Mode Setting (CALCULATION MODE)	
NORMAL	FAST
205 ms Max.	155 ms Max.

(2) In the case of DATA OUTPUT at COMM CONTROL,

Communication data output time is included.

Communication Speed Setting (COMM SPEED)	Calculation Mode Setting (CALCULATION MODE)	
	FAST	
$\mathbf{9 6 0 0 b p s}$	330 ms Max.	280 ms Max.
19200bps	$275 \mathrm{~ms} \mathrm{Max}$.	225 ms Max.
$\mathbf{3 8 4 0 0} \mathrm{bps}$	245 ms Max.	$195 \mathrm{~ms} \mathrm{Max}$.

c: Screen Display Time and Start Signal Standby Time
(1) Screen Display Time

Screen Display Time is the period required from the end of END Signal Output for screen displaying.
It is 355 ms Max. However, it changes in accordance with the type of screens as follows.

Display Screen	Period
SCHEDULE	205 ms Max.
MONITOR (The next coming signal makes the screen display cancelled in MONITOR Screen.)	0 ms
COMPARATOR	220 ms Max.
ENVELOPE	355 ms Max.
PRECHECK	60 ms Max.
CONTROL	55 ms Max.
STATUS	0 ms

Note) If the takt time is needed to shorten, display the MONITOR or STATUS screen.
(2) Start Signal Standby Time

It is the period necessary for opening Start Input Signal.
After Screen Display Time elapsed, it is required to open Start Input for 10 ms or more.
d: CAUTION Output is switched to OFF at the coming input of Start Signal.

Determination of Weld Schedule

Weld Schedule is determined after Chattering Prevention Time, "START SIG. TIME" elapses from the input of Start Signal.
(A)

Period set at START SIG. TIME

(B)

Period set at START SIG. TIME

In the above figure (A), as SCH 1 and SCH 8 are set to ON, weld is performed at Schedule \#9.

In (B), as only SCH 8 is set to ON, weld is at Schedule \#8. As SCH 16 and 32 are set to OFF at the timing of determining Schedule, they are invalid.

Behavior of START SIG. HOLD

* NO HOLD Setting: If Start Signal is made open during the period from SQD to W2, a weld sequence is broken off on the way and results in E13: CYCLE ERROR.
Even if Start Signal is made open during HO , the weld sequence goes to an end.
* WE HOLD Setting: After a beginning of W1, a weld sequence goes to an end even if Start Signal is made open.
* SQ HOLD Setting: After Start Signal is accepted, a weld sequence goes to an end even if Start Signal is made open.

Symbol:

SQD: Squeeze Delay Time
RC: Resistance Pre-check Time
U1: Upslope 1 Time
D1: Downslope 1 Time
U2: Upslope 2 Time
D2: Downslope 2 Time

SQZ: Squeeze Time
CP: Resistance Judgment Time (1 ms)
W1: 1st Weld Time
CO: Cool Time
W2: 2nd Weld Time
HO: Hold Time
a: Closed circuit is required until the termination of W2.
b: Closed circuit is required until the termination of SQZ.
c: Closed circuit is required until the beginning of SQZ.

(4) Behavior of END SIG. TIME

* HOLD: When 2ND STAGE Signal is closed for 10 ms or less, END or GOOD Signal is output for 10 ms .
When 2ND STAGE Signal is closed for the longer period than 10 ms , END or GOOD Signal is output for the closed period.
* $10 \mathrm{~ms}, 100 \mathrm{~ms}$: END or GOOD Signal is output for the set period regardless of the condition of 2ND STAGE Signal.

Symbol:
SQD: Squeeze Delay Time
RC: Resistance Pre-check Time
U1: Upslope 1 Time
D1: Downslope 1 Time
U2: Upslope 2 Time
D2: Downslope 2 Time

SQZ: Squeeze Time
CP: Resistance Judgment Time (1 ms)
W1: 1st Weld Time
CO: Cool Time
W2: 2nd Weld Time
HO: Hold Time
a: During the set period (100 ms), END or GOOD Signal is output regardless of the condition of 2ND STAGE Input.
b: When the period of 2ND STAGE Input is 10 ms or less, END or GOOD Signal is output for 10 ms .
When the period of 2ND STAGE Input is longer than 10 ms . END or GOOD Signal is output until 2ND STAGE Input is open.

(5) Behavior of SOL1 and SOL2

SOL1 Output works by the Input of 1ST STAGE. When 1ST STAGE Input is open, SOL1 Output also becomes open if it is before the start of a weld sequence. After the start of a sequence, even if 1ST STAGE Input is open, SOL1 Output keeps closed until the sequence comes to an end.
When using SOL1, 1ST STAGE Input allows SOL1 to adjust a squeeze location. After inputting 1ST STAGE, weld current can be supplied by 2ND STAGE Input. SOL1 becomes opened with SOL2 output after the end of HO in spite of the input condition of 1ST STAGE.

SOL2 output works by the Input of 2ND STAGE and is closed from SQD to HO.

Symbol:

SQD: Squeeze Delay Time
RC: Resistance Pre-check Time
U1: Upslope 1 Time
D1: Downslope 1 Time
U2: Upslope 2 Time
D2: Downslope 2 Time

SQZ: Squeeze Time
CP: Resistance Judgment Time (1 ms)
W1: 1st Weld Time
CO: Cool Time
W2: 2nd Weld Time
HO: Hold Time
a: When 1ST STAGE Input is open before the start of a weld sequence, SOL1 Output also becomes open.
b: Once the sequence is started, SOL1 Output keeps closed until HO is completed even if 1ST STAGE Input is made open.
c: START SIG. TIME, the period set for prevention of chattering.

"Error" or "Caution" in PRECHECK

An example of weld sequence is shown, representing that a current goes out of the range between the upper and lower limit set in PRECHECK Screen with an error signal, "NG" or "Caution" generated in the use of PRECHECK Current Supply function.

(END Output is not produced.)

(7) At Occurrence of "Error" or "Caution"

A sample weld sequence is shown, which represents the occasion where NG or CAUTION is produced while current is supplied.

(END Output is not produced.)
Note) Reset an error at least a second after an error is displayed.
If an error is reset immediately, the display may not disappear.

(8) Behavior in TRANS SCAN MODE

(1) OFF Setting

It is a setting of the case where Transformer Selector MA-650A is not used. The behavior is the same as the one in (1) Fundamental Sequence.

Those settings mentioned below in (2) through (6) are the ones of the case where Transformer Selector MA-650A is used.
(2) ON Setting

The weld current is supplied through the transformer set at the item of Transformer No. (TR\#) in SCHEDULE Screen.
Supposing that SCHEDULE No. is 2 (SCH2) and Transformer No. is 3 (TR\#3), the timing chart where the supply of weld current is started is shown as follows.

a: Transformer Changeover Time (10 ms)
b: Time period for computing a monitored value
See b: Time period for computing a monitored value at 9.(1) Fundamental Sequence.

Because Transformer 3 (TR\#3) is set for SCHEDULE \#2 (SCH2), weld current is supplied through the Transformer connected to Transformer 3 in Transformer Selector MA-650A.

(3) 1-5 Setting

Firstly, weld current is supplied on the first selected SCHEDULE No. (N), then on the next SCHEDULE No. $(\mathrm{N}+1)$, and then on the consecutive SCHEDULE Nos. $\mathrm{N}+2, \mathrm{~N}+3, \mathrm{~N}+4$ in turn.
In this occasion, weld current is supplied through the transformer selected at Transformer No. (TR\#) in each SCHEDULE Screen.
That is to say, in the case that the supply of weld current is started in the condition of SCHEDULE No. 2 selected, firstly weld current is supplied on SCHEDULE No.2, then SCHEDULE No.3, SCHEDULE No.4, SCHEDULE No.5, lastly on SCHEDULE No.6.

For example, Supposing that SCHEDULE No. is 2 (SCH2) and Transformer No. is 1 (TR\#1), similarly SCH3-TR\#4, SCH4-TR\#5, SCH5-TR\#2, SCH6-TR\#3, the timing chart where the supply of weld current is started is shown as follows.

As Transformer 1 (TR\#1) is set for the first SCHEDULE No. 2 (SCH2), weld current is firstly supplied through the transformer connected to Transformer 1 of Transformer Selector MA-650A, and then through Transformer 4, Transformer 5, Transformer 2 and Transformer 3 in turn. The Squeeze Delay Time (SQD) is added in the first weld current only. In the example above, it is added in SCH2 only.
a: Monitored Value Computing Time and Transformer Changeover Time
It is the sum of \mathbf{b} : Monitored Value Computing Time plus Transformer Changeover Time, 10 ms .
b: Monitored Value Computing Time
Changes in dependence on Monitor Value Calculation Mode (CALCULATION MODE at 6.(9)ⓈTATUS (1/2) Screen), Communication Setting (COMM CONTROL and COMM SPEED at 6.(9)(2STATUS (2/2)
Screen) and the type of screens as the following page.

1) In the case of OFF or BI-DIRECTION at COMM CONTROL,

Display Screen	CALCULATION MODE	
	NORMAL	FAST
SCHEDULE	360 ms	310 ms
MONITOR	205 ms	155 ms
COMPARATOR	380 ms	330 ms
ENVELOPE	515 ms	465 ms
PRECHECK	220 ms	170 ms
CONTROL	215 ms	165 ms
STATUS	205 ms	155 ms

Note)
The values at the tables show maximum ones.
2) In the case of DATA OUTPUT at COMM CONTROL,

COMM SPEED	Display Screen	CALCULATION MODE	
		NORMAL	FAST
9600bps	SCHEDULE	485 ms	435 ms
	MONITOR	330 ms	280 ms
	COMPARATOR	505 ms	455 ms
	ENVELOPE	640 ms	590 ms
	PRECHECK	345 ms	295 ms
	CONTROL	340 ms	290 ms
	STATUS	330 ms	280 ms
19200bps	SCHEDULE	430 ms	380 ms
	MONITOR	275 ms	225 ms
	COMPARATOR	450 ms	400 ms
	ENVELOPE	585 ms	535 ms
	PRECHECK	290 ms	240 ms
	CONTROL	285 ms	235 ms
	STATUS	275 ms	225 ms
38400bps	SCHEDULE	400 ms	350 ms
	MONITOR	245 ms	195 ms
	COMPARATOR	420 ms	370 ms
	ENVELOPE	555 ms	505 ms
	PRECHECK	260 ms	210 ms
	CONTROL	255 ms	205 ms
	STATUS	245 ms	195 ms

Note)
The values at the tables show maximum ones.
(4) 1-2 Setting

As same as in (3) 1-5 Setting, weld current is supplied on the consecutive 2 SCHEDULE No.'s in turn.
Weld current is supplied through the transformer selected at Transformer No. (TR\#) in each SCHEDULE Screen.

(5) 1-3 Setting

Similarly in the following part, weld current is supplied on the consecutive 3 SCHEDULE No.'s.
Weld current is supplied through the transformer selected at Transformer No. (TR\#) in each SCHEDULE Screen.
The Squeeze Delay Time (SQD) is added in the first weld current only.

(6) 1-4 Setting

Weld current is supplied on the consecutive 4 SCHEDULE No.'s.
Weld current is supplied through the transformer selected at Transformer No.
(TR\#) in each SCHEDULE Screen.
The Squeeze Delay Time (SQD) is added in the first weld current only.

NG/CAUTION during Weld Current Supplied

When the errors of Upper Limit (H) and Lower Limit (L) of the weld current, voltage, power and resistance are set as the setting of NG, the equipment stops by the NG Signal at the occurrence of the errors. When the errors of them are set as the setting of CAUTION, the CAUTION Signal is generated after completing all the supply of weld current.
Concerning the errors of CAUTION when the count-up of a counter has reached the preset counter value, the CAUTION Signal is generated after completing all the supply of weld current.

Concerning NG/CAUTION in other judgment, the equipment stops at the occurrence of NG/CAUTION.

Note) The monitor is not redisplayed when the weld current is not supplied in the schedule (the weld time is 0 ms).
Also, the next welding starts, redisplaying the monitor is interrupted.
Therefore, when the last schedule of transformer changeover is set not to supply the weld current, the previous monitor is remained displayed.

(9) Movement of Displacement Sensor

Symbol:

SQD: Squeeze Delay Time
WD: Work Detecting Time (0.4 ms Max.)
CP : Resistance Judgment Time (1 ms)
CO : Cool Time
HO: Hold Time
a: Work Detection
When the range of work detection is set to the work detection (WORK DETECT at 6.(8) CONTROL Screen), the work detection is done after the end of SQZ. If the range of work detection is set to $+/-00.00 \mathrm{~mm}$, no work detection is done. Work detection Time is of 0.4 ms Max.
b: 1st Weld Stop (W1)
When the displacement weld stop (DISPLC) is set to 1 st Weld Stop to set the displacement (WE1 DINPUT at 6.(8) CONTROL Screen) and the displacement sensor arrives at the set displacement (e at the above figure), 1st Weld is stopped to make the sequence move to the next cool time (CO).
c: 2nd Weld Stop (W2)
When the displacement weld stop (DISPLC) is set to 2nd Weld Stop to set the displacement (WE1 DINPUT at 6.(8) CONTROL Screen) and the displacement sensor arrives at the set displacement (f at the above figure), 2nd Weld is stopped to make the sequence move to the next hold time (HO).
d: Delay Time
When the value of Delay Time is set to DELAY TIME (DELAY TIME at 6.(8) CONTROL Screen), the displacement (\mathbf{g} at the above figure) after the delay time elapses is measured.

10. External Communication Function

(1) Introduction

IPB-5000B can be used to set schedules from an externally-connected personal computer (abbreviated as PC) or to read monitored data and several kinds of status data.

Data Transmission

Item	Content
Transmission Mode	Select either of the followings at STATUS Screen: * RS-485, Asynchronous, Half-Duplex * RS-232C
Transmission Rate	Select either of the followings at STATUS Screen: $9600,19200,38400$ bps
Data Format	Start bit: 1, Data bit: 8, Stop bit: 1, Parity bit: Even
Character Code	Output in ASCII code LF Code: [LF] 0AH, Space Code: [SP] 32H CR Code: [CR] 0DH
Checksum Data	None
Connector	D-Sub 9 pins Pin Position In RS-485, 5: SG, 6: RS+, 9: RS- In RS-232C, 2: RXD, 3: TXD, 5: SG

(3) Configuration

(1) RS-485

Note 1: When controlling two or more Lasers with one host computer, register the device No. (COMM UNIT\#) for each device. Set the device No. at STATUS Screen (See 6.(9)(2)(d)).
Note 2: Do not assign one number to more than one device. If one number is assigned to more than one device, data collision and inappropriate system operations may result.

Note 3: The RS-232C/RS-485 conversion adapter is not included in the accessories. It is required to prepare the adapter at customer's side.
(2) RS-232C

(4) Protocol

(1) Single-directional Communication Mode

(When DATA OUTPUT is selected at COMM CONTROL in STATUS Screen)

1) Monitor Data

Data strings: ! $\frac{01001}{A}: \frac{1.49}{C}, \frac{1.51}{D}, \frac{0.51}{\mathrm{~F}}, \frac{0.55}{\mathrm{~F}}, \frac{0.7}{\mathrm{G}}, \frac{0.3}{\mathrm{H}}, \frac{2.01}{\mathrm{l}}, \frac{2.03}{J}, \frac{0.61}{\mathrm{~K}}$,

$$
\frac{0.55}{\mathrm{~L}}, \frac{1.2}{\mathrm{M}}, \frac{0.3}{\mathrm{~N}}, \frac{+01.250}{\mathrm{O}}, \frac{010.0}{\mathrm{P}}, \frac{010.0}{\mathrm{Q}}, \frac{-00.300}{\mathrm{R}}[\mathrm{CR}][\mathrm{LF}]
$$

A	Device No.	Fixed to 2 digits (00 to 31)
B	Schedule No.	Fixed to 3 digits (001 to 127)
C	Monitor Current of WE1 (RMS)	Fixed to 4 digits (0.00 to 6.00) (kA)
D	Monitor Current of WE1 (PEAK)	Fixed to 4 digits (0.00 to 6.00) (kA)
E	Monitor Voltage of WE1 (RMS)	Fixed to 4 digits (0.00 to 9.99) (V)
F	Monitor Voltage of WE1 (PEAK)	Fixed to 4 digits (0.00 to 9.99) (V)
G	Monitor Power of WE1	Fixed to 4 digits (0.0 to 20.0) (kW) (CURR, VOLT, COMB, POWER-H Control) (NB1)
		Fixed to 4 digits (0.00 to9.99) (kW) (POWER-L Control)
H	Monitor Resistance of WE1	$\begin{aligned} & \text { Fixed to } 4 \text { digits }(0.0 \text { to } 99.9)(\mathrm{m} \Omega) \\ & (\mathrm{NB} 1) \end{aligned}$
1	Monitor Current of WE2 (RMS)	Fixed to 4 digits (0.00 to 6.00) (kA)
J	Monitor Current of WE2 (PEAK)	Fixed to 4 digits (0.00 to 6.00) (kA)
K	Monitor Voltage of WE2 (RMS)	Fixed to 4 digits (0.00 to 9.99) (V)
L	Monitor Voltage of WE2 (PEAK)	Fixed to 4 digits (0.00 to 9.99) (V)
M	Monitor Power of WE2	Fixed to 4 digits (0.0 to 20.0) (kW) (CURR, VOLT, COMB, POWER-H Control) (NB1)
		Fixed to 4 digits (0.00 to9.99) (kW) (POWER-L Control)
N	Monitor Resistance of WE2	$\begin{aligned} & \text { Fixed to } 4 \text { digits }(0.0 \text { to } 99.9)(\mathrm{m} \Omega) \\ & (\mathrm{NB} 1) \end{aligned}$
0	Final Displacement	Fixed to 7 digits (-29.999 to +29.999) (mm)
P	Weld Time of WE1	Fixed to 5 digits (000.0 to 500.0) (ms)
Q	Weld Time of WE2	Fixed to 5 digits (000.0 to 500.0) (ms)
R	Displacement at detecting Workpiece	Fixed to 7 digits (-29.999 to +29.999) (mm)

NB1: The range between 0.0 and 9.9 is output as [SP]0.0 and [SP]9.9.

2) Error Data

Data strings: 0 01001: $\mathrm{E} \underline{01}, \mathbf{0 2}, \mathbf{0 3}, \underline{05}, \mathbf{0 7}[\mathrm{CR}][\mathrm{LF}]$
A B CD E F G

A	Device No.	Fixed to 2 digits (00 to 31)
B	Schedule No.	Fixed to 3 digits (001 to 127) ${ }^{\text {(NB1) }}$
C	Error Code 1	Fixed to 2 digits (01 to 31)
D	Error Code 2	Fixed to 2 digits (01 to 31)
E	Error Code 3	Fixed to 2 digits (01 to 31)
F	Error Code 4	Fixed to 2 digits (01 to 31)
G	Error Code 5	Fixed to 2 digits (01 to 31)

The number of Error Codes is of five Max. In the case of only one error code, the error codes D to G are omitted.

NB1: When a setting for consecutive weldings is selected in TANS SCAN MODE, the schedule number of the last occurred error is sent.
(2) Bi-directional Communication Mode
(When BI-DIRECTION is selected at COMM CONTROL in STATUS Screen)
Description of Symbols
ID1, ID2: Shows Device No.
Fixed to 2 digits (ID1=Ten's place, ID2=One's place)
SH1, SH2, SH3: Shows Schedule No.
Fixed to 3 digits (SH1=Hundred's place, SH2=Ten's place, SH3=One's place)
CD1, CD2, CD3: Shows Specified Code.
CD1------------Alphabet Classified Symbol
CD2, CD3----Code Classified Number
(See (5)3Specified Code for details of codes.)

No.	Description of Command	Code
	Inquiry about Model and ROM Version	\# Device No.
1	Example: Read model of Device No. 1 and ROM Version From Host PC to IPB-5000B $\frac{\text { \# ID1 ID2 I CR LF }}{(\# 01 \text { I CR LF) }}$ From IPB-5000B to Host PC \qquad (! 01 : IPB-5000B , ROM Version CR LF) Note) When "*" is set for both ID1 and ID2, all connected devices respond. In the case that all devices respond, the time-lag of response is 100 ms multiplied by ID No. (Device No.).	

	Description of Command	Code
	Reading of Schedule Data	\# Device No. R Schedule No *
2	Example: Read all data of Schedule No. 8 in Device No. 01. From Host PC to IPB-5000B $\frac{\text { \# ID1 ID2 R SH1 SH2 SH3 * CR LF }}{\left(\# 01 R 008^{*}\right. \text { CR LF) }}$ From IPB-5000B to Host PC \qquad (! 01008 : Data String CR LF) Note) When Schedule No. (SH1, SH2, SH3) is "000", the basic set conditions are read. See (5)(1)Order Table of Schedule Data for the data order of a Schedule.	
3	Example: Set data on Schedule No. 8 in Device No. 01. From Host PC to IPB-5000B \# ID1 ID2 W SH1 SH2 SH3 : Data String CR LF (\# 01 W 008 : Data String CR LF) From IPB-5000B to Host PC ! ID1 ID2 SH1 SH2 SH3: Data String CR LF (! 01008 : Data String CR LF) Note) * Regarding the number of digits and location of the decimal point in each data, each data is required to follow Data Code Table and be separated with ",". * See (5)®Order Table of Schedule Data for the data order of a Schedule. * When Schedule No. is " 000 ", the basic set conditions are set. * The set data is returned as confirmation from IPB-5000B. When data outside the range is set, the last data before setting is exactly returned.	
4	$\begin{aligned} & (\# 01 \mathrm{R} 031 \mathrm{~T} 07 \mathrm{CR} \text { LF) } \\ & \text { From IPB-5000B to Host PC } \\ & \quad \text { ! ID1 ID2 SH1 SH2 SH3: Data CR LF } \\ & \hline(!01031 \mathrm{~T} 07: 023.0 \mathrm{~ms} \mathrm{CRLF}) \end{aligned}$ te) See (5)(3Specified Code for Specified Code and Data.	

No.	Description of Command	Code
5	Setting of Specified	\# Device No. W Schedule Specified Code : Data
	Example: Set the current of Device No. 01 to 3.2 kA . From Host PC to IPB-50 \qquad (\# 01 W 031 H 0 From IPB-5000B to Hos $\frac{\text { ! ID1 ID2 SH1 SH2 }}{(!01031 \mathrm{H} 01:}$ Note) * See (5) ${ }^{3}$ Specified * Regarding the num point in each data Code Table. * The set data is retur When data outside setting is exactly ret	1st. Weld Time on Schedule No. 31 in 0B H2 SH3 CD1 CD2 CD3 : Data CR LF 1:3.20kACR LF) PC SH3 : Data CR LF 3.20 kACRLF) Code for Specified Code and Data. ber of digits and location of the decimal each data is required to follow Data rned as confirmation from IPB-5000B. the range is set, the last data before urned.
6	Reading of Initial Setting	Device No. R Specified Code
	Example: Read model of Transformer IT* $\mathbf{3 6 0}^{*} \mathbf{6}$ (Data is 01) at Initial Setting (6.(9) STATUS Screen) in Device No. 01. From Host PC to IPB-5000B $\frac{\text { \# ID1 ID2 R CD1 CD2 CD3 CR LF }}{\text { (\# } 01 \text { R P } 40 \text { CR LF) }}$ From IPB-5000B to Host PC Note) See (5)(3Specified Code for Specified Code and Data.	
7	Setting of Initial Setting Condition	\# Device No.
	Example: Set the time period during which Weld End Signal Time is output to 100 ms (Data is 01) at Initial Setting (6.(9) STATUS Screen) in Device No. 01. From Host PC to IPB-5000B \# ID1 ID2 W CD1 CD2 CD3 : Data CR LF (\#01 WP03:01CRLF) From IPB-5000B to Host PC $\frac{\text { ! ID1 ID2 CD1 CD2 CD3 : Data CR LF }}{\text { (! 01P03:01CRLF) }}$ Note) * See (5)(3Specified Code for Specified Code and Data. * Regarding the number of digits and location of the decimal point in each data, each data is required to follow Data Code Table. * The set data is returned as confirmation from IPB-5000B. When data outside the range is set, the last data before setting is exactly returned.	

No.	Description of Command	Code
8	Reading of monitor data in specified range	\# Device No. ? Specifying of Range
	Example: Read monitor data From Host PC to IPB-50 \# ID1 ID2 ? Start (\# 01 ? 0001 -0 From IPB-5000B to Hos \qquad ! ID1 ID2 Start No (! 010001-00 Note) See (5)(2)Order Table No.	from No. 0001 to 0017 in Device No. 01. 00B No. - End No. CR LF 017 CR LF) PC - End No., Data CR LF 17 , Data String CR LF) of Monitor Data for Start No. and End
9	Reading of Trouble	\# Device No. R E99
	Example: Read all troubled No. 01. From Host PC to IPB-50 \qquad (\# 01 RE 99 CR From IPB-5000B to Hos \qquad (! 01 E99:E02 Note)All error codes are read In no trouble, data of " (! 01E99:00CR LF)	items (Error Codes, E02 E05) in Device 00B D2 CD3 CR LF LF) PC SH3: Data CR LF , E 05 CR LF) (Each error code is separated with ","). 0 " is returned.
10	Error Reset	\# Device No. R E00
	Example: Release troubles in From Host PC to IPB-50 \qquad (\# 01 RE 00 CR From IPB-5000B to Hos \qquad (! 01E00:00C	Device No. 01. OOB CR LF PC 0 CR LF LF)

(5) Data Code Table

(1) Order Table of Schedule Data

1) Specific Data in accordance with Schedule No. (Schedule No.: 001 to 127)

Order	$\begin{gathered} \hline \text { Character } \\ \text { String } \\ \hline \hline \end{gathered}$		Item	Range of Setting	Increment/ Decrement
1	nnnn,	Squeeze Time		0000 to 9999	1 ms
2	nnn.n,	Upslope 1 Time ${ }^{\text {(NB1) }}$		000.0 to 500.0	0.2 ms
3	nnn.n,	1st. Weld Time ${ }^{\text {(NB1) }}$		000.0 to 500.0	0.2 ms
4	nnn.n,	Downslope 1 Time ${ }^{\text {(NB1) }}$		00.0 to 500.0	0.2 ms
5	nn.n,	Cool Time ${ }^{(N B 1)}$		00.0 to 99.8	0.2 ms
6	nnn.n,	Upslope 2 Time ${ }^{\text {(NB1) }}$		000.0 to 500.0	0.2 ms
7	nnn.n,	2nd. Weld Time ${ }^{\text {(NB1) }}$		000.0 to 500.0	0.2 ms
8	nnn.n,	Downslope 2 Time ${ }^{\text {(NB1) }}$		000.0 to 500.0	0.2 ms
9	nnn,	Hold Time		000 to 999	1 ms
10	n.nn,	WE1 Current Setting	MIN CURR: NORMAL MIN CURR: LOW	0.40 to 6.00	0.01kA
11	n.nn,	WE2 Current Setting	MIN CURR: NORMAL MIN CURR: LOW	0.40 to 6.00	0.01 kA
12	n.nn,	WE1 Voltage Setting		0.30 to 9.99	0.01 V
13	n.nn,	WE2 Voltage Setting		0.30 to 9.99	0.01 V
14	nn.n,	WE1 Power Setting	CONTROL: POWER-H	00.2 to 20.0	0.1 kW
14			CONTROL: POWER-L	0.10 to 9.99	0.01 kW
15	nn.n,	WE2 Power Setting	CONTROL: POWER-H	00.2 to 20.0	0.1 kW
			CONTROL: POWER-L	0.10 to 9.99	0.01kW
16	n ,	Transformer No.		1 to 5	----
17	nn ,	Control Method in WE1		00 to $04{ }^{\text {(NB2) }}$	
18	nn ,	Control Method in WE2		00 to 04	
19	nnnn	Squeeze Delay Time		0000 to 9999	1 ms

NB1: You can select whether or not Upslope Time and Downslope Time are included in Weld Time. If they are not included, the total time of Upslope Time, Weld Time and Downslope is up to 500 ms .

NB2: 00: CURR, 01: VOLT, 02: COMB, 03: POWER (POWER-H), 04: POWER (POWER-L)

2) Common Data

Order	$\begin{array}{\|c} \hline \text { Character } \\ \text { String } \end{array}$	Item	Contents
1	nn ,	Selection of Welding Transformer	$\begin{aligned} & \text { 01: } I^{*}-360^{*} 6 \\ & \text { 02: } 1 T^{*}-780^{*} 6 \\ & \hline \end{aligned}$
2	nn ,	Weld Time	00: Slope Time Excluded 01: Slope Time Included
3	nn ,	Selection of Start-up Condition Stabilizing Time	$\begin{array}{\|ll\|} \hline 00: 1 \mathrm{~ms} & 01: 5 \mathrm{~ms} \\ 02: 10 \mathrm{~ms} & 03: 20 \mathrm{~ms} \end{array}$
4	nn ,	Selection of Start-up Input Signal Type	00: No Self-sustaining 01:Self-sustaining from Weld Time 02: Self-sustaining from Squeeze Time
5	nn,	Schedule Select Method	00: Closed Circuit of Schedule Select Terminal (No Parity) 01: Closed Circuit of Schedule Select Terminal (Parity Valid) 02: Select on Front Panel
6	nn,	End Signal Output Time	00: $10 \mathrm{~ms} \quad 01: 100 \mathrm{~ms}$ 02: While Start Signal Output
7	nn ,	Monitor Mode	00: Slope Time Excluded 01: Slope Time Included
8	nn ,	Transformer Scan Mode	00: OFF $01:$ ON 02: $1-2$ $03: 1-3$ $04: 1-4$ $05: 1-5$
9	nn ,	No-current Monitor Neglect Time	00 to 10 (ms)
10	nn ,	Pulse Width Monitor Neglect Time	00 to 10 (ms)
11	nn ,	NG Output Mode	00: Open Circuit at NG 01: Closed Circuit at NG
12	nn ,	READY Output Mode Setting	00: ON at Weld ON 01: ON at Power ON
13	nn ,	Monitor Value Calculation Mode	00: High Rate Sampling 01: Low Rate Sampling, Faster Takt Time
14	nn ,	Minimum Current	00 : Settable from 10% of full scale. 01: Settable from 2.5% of full scale.
15	$n \mathrm{n}$	Displacement polarity	00: Set the force-applying direction as plus. 01:Set the force-applying direction as minus.

Order Table of Monitor Data (Most Recent Monitor Value)

Order	Output Data $(\mathrm{n}=0 \text { to } 9)$	Contents	
0001	n.nn,	WE1 Monitor Current (Peak Value)	
0002	n.nn,	WE2 Monitor Current (Peak Value)	
0003	n.nn,	WE1 Monitor Voltage (Peak Value)	
0004	n.nn,	WE2 Monitor Voltage (Peak Value)	
0005	nn.n, (NB1)	WE1 Monitor Power	POWER-H Constant Power Control
	n.nn,		POWER-L Constant Power Control
0006	nn.n, (NB1)	WE2 Monitor Power	POWER-H Constant Power Control
	n.nn,		POWER-L Constant Power Control
0007	nn.n, (NB1)	WE1 Monitor Resistance	
0008	nn.n, (NB1)	WE2 Monitor Resistance	
0009	n.nn,	Precheck Monitor Current	
0010	n.nn,	WE1 Monitor Current (RMS Value)	
0011	n.nn,	WE2 Monitor Current (RMS Value)	
0012	n.nn,	WE1 Monitor Voltage (RMS Value)	
0013	n.nn,	WE2 Monitor Voltage (RMS Value)	
0014	+/-nn.nnn,	Final Displacement	
0015	nnn.n,	W1 Weld Time	
0016	nnn.n,	W2 Weld Time	
0017	+/-nn.nnn	Displacement at detecting Workpiece	

NB1: The range between 0.0 and 9.9 is output as [SP]0.0 and [SP]9.9.

(3) Specified Code

1) Specifying of Weld Sequence (T)

Dimension of "ms" is added to each data.

Specified Code	Item	Range of Setting	Increment/ Decrement
T00	Squeeze Delay Time	0000 ms to 999 ms	1 ms
T01	Squeeze Time	0000 ms to 999 ms	1 ms
T02	Upslope 1 Time	000.0 ms to 500.0 ms	0.2 ms
T03	1st. Weld Time	000.0 ms to 500.0 ms	0.2 ms
T04	Downslope 1 Time	000.0 ms to 500.0 ms	0.2 ms
T05	Cool Time	00.0 ms to 99.8 ms	0.2 ms
T06	Upslope 2 Time	000.0 ms to 500.0 ms	0.2 ms
T07	2nd. Weld Time	000.0 ms to 500.0 ms	0.2 ms
T08	Downslope 2 Time	000.0 ms to 500.0 ms	0.2 ms
T13	Hold Time	000 ms to 999 ms	1 ms
T15	Precheck Weld Time	00.0 ms to 10.0 ms	0.2 ms

2) Setting of Control Current, Voltage and Power (H)

Specified Code	Item		Range of Setting	Increment/ Decrement
H01	WE1 Current Setting	NORMAL	0.40 kA to 4.00 kA (IT*-360*6) 0.60 kA to 6.00 kA (IT*-780*6) Bracket () shows Transformer.	0.01 kA
		LOW	0.10 kA to 4.00 kA (IT* ${ }^{*} \mathbf{3 6 0 * 6}$) 0.15 kA to 6.00 kA (IT*-780*6)	0.01kA
H02	WE2 Current Setting	NORMAL	0.40 kA to 4.00 kA (IT** $360 * 6$) 0.60 kA to 6.00 kA (IT*-780*6)	0.01kA
		LOW	0.10 kA to 4.00 kA (IT* ${ }^{*} \mathbf{3 6 0 * 6}$) 0.15 kA to 6.00 kA (IT*-780*6)	0.01 kA
H04	WE1 Voltage Setting		0.30 V to 9.99 V	0.01 V
H05	WE2 Voltage Setting		0.30 V to 9.99 V	0.01 V
H06	WE1 Power Setting		00.2 kW to 20.0kW (POWER-H)	0.1 kW
			0.10 kW to 9.99kW (POWER-L)	0.01 kW
H07	WE2 Power Setting		00.2 kW to 20.0kW (POWER-H)	0.1 kW
			0.10 kW to 9.99kW (POWER-L)	0.01 kW
H21	Precheck Voltage Setting		0.00 V to 9.99V	0.01 V
H50	Transformer Number		1 to 5	1

3) Setting of Monitor Upper/Lower Limit (N)

Specified Code	Item		Range of Setting	Increment/ Decrement
N00	WE1 Monitor Current Upper Limit		0.00 kA to 9.99 kA	0.01 kA
N01	WE1 Monitor Current Lower Limit		0.00 kA to 9.99 kA	0.01 kA
N02	WE2 Monitor Current Upper Limit		0.00 kA to 9.99 kA	0.01 kA
N03	WE2 Monitor Current Lower Limit		0.00 kA to 9.99 kA	0.01 kA
N06	WE1 Monitor Voltage Upper Limit		0.00 V to 9.99 V	0.01 V
N07	WE1 Monitor Voltage Lower Limit		0.00 V to 9.99 V	0.01 V
N08	WE2 Monitor Voltage Upper Limit		0.00 V to 9.99 V	0.01 V
N09	WE2 Monitor Voltage Lower Limit		0.00 V to 9.99 V	0.01 V
N12	WE1 Monitor Power Upper Limit	POWER-H ${ }^{\text {(NB1) }}$	00.0kW to 99.9kW	0.1 kW
		POWER-L ${ }^{(N B 1)}$	0.00 kW to 9.99 kW	0.01 kW
N13	WE1 Monitor Power Lower Limit	POWER-H	00.0 kW to 99.9kW	0.1 kW
		POWER-L	0.00 kW to 9.99 kW	0.01 kW
N14	WE2 Monitor Power Upper Limit	POWER-H	00.0 kW to 99.9kW	0.1 kW
		POWER-L	0.00 kW to 9.99 kW	0.01 kW
N15	WE2 Monitor Power Lower Limit	POWER-H	00.0kW to 99.9kW	0.1 kW
		POWER-L	0.00 kW to 9.99 kW	0.01 kW
N24	WE1 Monitor Resistance Upper Limit		$00.0 \mathrm{~m}^{*}$ to $99.9 \mathrm{~m}^{*}$	$0.1 \mathrm{~m}^{*}$ (NB2)
N25	WE1 Monitor Resistance Lower Limit		00.0m* to $99.9 \mathrm{~m}^{*}$	$0.1 \mathrm{~m}^{*}$
N26	WE2 Monitor Resistance Upper Limit		$00.0 \mathrm{~m}^{*}$ to $99.9 \mathrm{~m}^{*}$	$0.1 \mathrm{~m}^{*}$
N27	WE2 Monitor Resistance Lower Limit		$00.0 \mathrm{~m}^{*}$ to $99.9 \mathrm{~m}^{*}$	0.1m*
N36	Final Displacement Upper Limit		$\begin{array}{\|c\|} \hline-29.999 \\ \text { to } \\ +29.999 \mathrm{~mm} \\ \hline \end{array}$	0.001 mm
N37	Final Displacement Lower Limit		$\begin{array}{\|r\|} \hline-29.999 \\ \text { to } \\ \\ +29.999 \mathrm{~mm} \\ \hline \end{array}$	0.001 mm
N42	Resistance Precheck Monitor Current Upper Limit		0.00 kA to 9.99 kA	0.01 kA
N43	Resistance Precheck Monitor Current Lower Limit		0.00kA to 9.99 kA	0.01kA
N65	WE1 Weld Time Upper Limit		000.0 ms to 500.0 ms	0.1 ms
N66	WE1 Weld Time Lower Limit		000.0 ms to 500.0 ms	0.1 ms
N67	WE2 Weld Time Upper Limit		000.0 ms to 500.0 ms	0.1 ms
N68	WE2 Weld Time Lower Limit		000.0 ms to 500.0 ms	0.1 ms
N70	Setting of Current RMS/PEAK		0:RMS/1:PEAK	--
N72	Setting of Voltage RMS/PEAK		0:RMS/1:PEAK	--
N73	Displacement Delay Time		0 to 999ms	
N74	Workpiece Detect Upper Limit		$\begin{aligned} & -29.999 \text { to } \\ & \quad+29.999 \mathrm{~mm} \end{aligned}$	0.001 mm
N75	Workpiece Detect Lower Limit			

NB1: POWER-H, POWER-L indicates Constant Power Control.
NB2: The symbol "*" means Ω.
4) Reading of Monitor Judgment Results (J)

The function to save judging results is not equipped. Read them after each welding.

Specified Code	Item	Contents
J00	Judgment Result of Current Upper/Lower Limit	Judgment Result Data: ' N ' means OK. 'L' means Lower Limit NG. 'H' means Upper Limit NG.
J03	Judgment Result of Voltage Upper/Lower Limit	
J06	Judgment Result of Power Upper/Lower Limit	
J12	Judgment Result of Resistance Upper/Lower Limit	
J18	Judgment Result of Final Displacement	
J55	Judgment Result of Weld Time	
J21	Judgment Result of Precheck Current	Judgment of Weld Workpiece Setting Status in Precheck: ' N ' means OK. 'E' means NG.
J56	Judgment Result of Work Detection	
J99	Judgment Result (Batch Output)	Batch output of monitor judgment result

- Batch Output of Monitor Judgment Result (Specified code: J99)

Order	Output Data	Contents
1	n, (NB1)	Judgment Result of Current Upper/Lower Limit
2	n , (NB1)	Judgment Result of Voltage Upper/Lower Limit
3	n , (NB1)	Judgment Result of Power Upper/Lower Limit
4	n , (NB1)	Judgment Result of Resistance Upper/Lower Limit
5	n , (NB2)	Judgment Result of Precheck Current
6	n , (NB1)	Judgment Result of Final Displacement
7	n , (NB1)	Judgment Result of Weld Time
8	n (NB2)	Judgment Result of Work Detection

NB1: Judgment Result Data: 'N' means OK, 'L' means Lower Limit NG, and 'H' means Upper Limit NG.
NB2: Judgment Result Data: 'N' means OK, and 'E' means NG.
5) Reading of Monitored Value (M)

The function to save judging results is not equipped. Read them after each welding.

Specified Code	Item	Contents (n=0 to 9)
M00	WE1 Monitor Current (PEAK Value)	n.nnkA
M01	WE2 Monitor Current (PEAK Value)	n.nnkA
M03	WE1 Monitor Voltage (PEAK Value)	n.nnV
M04	WE2 Monitor Voltage (PEAK Value)	n.nnV
M06	WE1 Monitor Power (POWER-H) (NB2)	nn.nkW (NB1)
	WE1 Monitor Power (POWER-L) (NB2)	n.nnkW
M07	WE2 Monitor Power (POWER-H) (NB2)	nn.nkW (NB1)
	WE2 Monitor Power (POWER-L) ${ }^{\text {(NB2) }}$	n.nnkW
M12	WE1 Monitor Resistance	nn.nm* (NB1) (NB3)
M13	WE2 Monitor Resistance	nn.nm* (NB1) (NB3)
M18	Final Displacement	+/-nn.nnnmm
M21	Precheck Monitor Current	n.nnkA
M23	WE1 Weld Time	nnn.nms
M24	WE2 Weld Time	nnn.nms
M30	WE1 Monitor Current (RMS Value)	n.nnkA
M31	WE2 Monitor Current (RMS Value)	n.nnkA
M32	WE1 Monitor Voltage (RMS Value)	n.nnV
M33	WE2 Monitor Voltage (RMS Value)	n.nnV
M65	Work Detecting Displacement	+/-nn.nnnmm
M99	Monitor Value (Batch Output)	Batch output of monitor value

NB1: The range between 0.0 and 9.9 is output as [SP]0.0 and [SP]9.9.
NB2: POWER-H, POWER-L indicates Constant Power Control.
NB3: The symbol "*" means Ω.

- Batch Output of Monitor Value (Specified code: M99)

Order	Output Data $\mathbf{(n = 0 ~ t o ~ 9) ~}^{\prime}$	Contents
1	n.nn,	WE1 Monitor Current (PEAK Value)
2	n.nn,	WE2 Monitor Current (PEAK Value)
3	n.nn,	WE1 Monitor Voltage (PEAK Value)
4	n.nn,	WE2 Monitor Voltage (PEAK Value)
5	nn.n, $^{(N B 1)}$	WE1 Monitor Power (POWER-H Constant Power Control)
	n.nn,	WE1 Monitor Power (POWER-L Constant Power Control)
6	nn.n, (NB1)	WE2 Monitor Power (POWER-H Constant Power Control)
	n.nn,	WE2 Monitor Power (POWER-L Constant Power Control)
7	nn.n, (NB1)	WE1 Monitor Resistance
8	nn.n, (NB1)	WE2 Monitor Resistance

Order	Output Data (n=0 to 9)	Contents
9	n.nn,	Precheck Monitor Current
10	n.nn,	WE1 Monitor Current (RMS Value)
11	n.nn,	WE2 Monitor Current (RMS Value)
12	n.nn,	WE1 Monitor Voltage (RMS Value)
13	n.nn,	WE2 Monitor Voltage (RMS Value)
14	\pm nn.nnn,	Final Displacement
15	nnn.n,	WE1 Weld Time
16	nnn.n,	WE2 Weld Time
17	$\pm n n . n n n$	Work Detecting Displacement

NB1: The range between 0.0 and 9.9 is output as [SP]0.0 and [SP]9.9.
6) Reading of Items relating with Envelope (V)

Specified Code	Item	Contents
V00	Envelope Type	0: Current, 1: Voltage, 2: Power, 3: Resistance, 4: Displacement
V01	Interval Start Time	nnnnnms
V02	Interval End Time	nnnnnms
V03	Offset Upper Limit (+)	n.nnkA/n.nnV/nn.nkW/nn.nm*/ nn.nnnmm (NB1)
V04	Offset Lower Limit (-)	n.nnkA/n.nnV/nn.nkW/nn.nm*/ nn.nnnmm (NB1)
V05	Envelope ON/OFF	$0:$ OFF, 1: ON

NB1: The symbol "*" means Ω.
7) Setting of Items relating with Counter (C)

Specified Code	Item	Contents
C00	Reading of Displayed Counter	
C14	Counter Mode	0: TOTAL, 1: GOOD, 2: WORK
C05	Preset (TOTAL/GOOD)	000000 to 999999
C06	Preset (WORK)	000000 to 999999
C07	Preset (WELD)	00 to 99
C11	Counter Reset (All Counters)	
C12	Resolution of Displacement Sensor	00.1 to 10.0um

8) Setting of Initial Setting Condition (P)

Specified Code	Item	Contents
P01	Schedule Select Method	00: Closed Circuit of Schedule Select Terminal (No Parity) 01: Closed Circuit of Schedule Select Terminal (Parity Valid) 02: Select on Front Panel
P02	Start Signal Stabilizing Time (Delay Time)	$\begin{array}{\|ll\|} \hline 00: 1 \mathrm{~ms} & 01: 5 \mathrm{~ms} \\ 02: 10 \mathrm{~ms} & 03: 20 \mathrm{~ms} \end{array}$
P03	End Signal Output Time	00: $10 \mathrm{~ms} \quad 01: 100 \mathrm{~ms}$ 02: While Start Signal Output
P04	Self-sustaining Time at Starting	```00: No Self-sustaining 01: Self-sustaining from Weld Time 02: Self-sustaining from Squeeze Time```
P10	Weld ON/OFF	00: Weld OFF 01: Weld ON
P40	Weld Transformer	$\begin{aligned} & \text { 00: } 1 T^{*}-142^{*} 6 \text { (Do not select) } \\ & \text { 01: } 1 T^{*}-360^{*} 6 \\ & \text { 02: } 1 T^{*}-780^{*} 6 \end{aligned}$
P41	Monitor Value Display Mode	00: Slope Time Excluded 01: Slope Time Includes
P43	Transformer Scan Mode	00: OFF $01:$ ON $02: 1-2$ $03: 1-3$ $04: 1-4$ $05: 1-5$
P45	No-current Monitor Start Time	00 to 10 (Dimension "ms" Eliminated)
P46	Pulse Width Monitor Start Time	00 to 10 (Dimension "ms" Eliminated)
P47	NG Terminal Mode Setting	00: Open Circuit at NG 01: Closed Circuit at NG
P48	READY Output Mode Setting	00: ON at Weld ON 01: ON at Power ON
P49	Monitor Value Calculation Method	00: Normal 01: Fast
P52	Weld Time	00: Slope Time Excluded 01: Slope Time Included
P60	Minimum Current	00: Settable from 10% of full scale. 01: Settable from 2.5% of full scale.
P61	Displacement polarity	00 : Set the force-applying direction as plus. 01: Set the force-applying direction as minus.

9) Reading of Error and Error Reset (E)

Specified Code	Item
E00	Error Reset
E99	Error Reading

See 12. Error Codes for details of Codes E01 to E25.
10) Control (Q)

Specified Code	Item	Contents
Q00	W1 Control Mode	00: Constant Current 01: Constant Voltage 02: COMBI 03: Constant Power (POWER-H) 04: Constant Power (POWER-L)
Q01	W2 Control Mode	00: OFF 01: Displacement 02: Current 03: Voltage
Q02	Selection of W1 Weld Sta Input	Q03 Qelection of W2 Weld Stop Input
Q04	W1 Weld Stop Condition	n.nnkA n.nnV +/-nn.nnnmm
Q05	W2 Weld Stop Condition	

11. Specifications

(1) Specifications

Items	Common Specification in IPB-5000B
Weld Current Control Method	(1) Constant Current Control: Controls so that weld current can be the set current (2) Constant Voltage Control: Controls so that the voltage detected at V sensing cord connected across electrodes can be the set voltage (3) Constant Current/Constant Voltage Combination Control: Either of both methods in which the value arrives at set value more quickly is prioritized while both Constant Current and Constant Voltage Control method work simultaneously (4) Constant Power Control: Controls so that power value can be the set power
Rated Capacity	17.4kVA (IT*-780*6 in use)
Schedule Select Numbers	127 Schedules (1 to 127), Selected by External Signal or on Panel
Timer Setting Range	Squeeze Delay Time (SQD): 0000 to 9999 ms (1ms each*) "each" represents $\operatorname{Increment~or~Decrement.~}$ Squeeze Time (SQZ): 0000 to 9999 ms (1ms ea.) PRECHECK Current (RC): 00.0 to 10.0 ms (0.2ms ea.) PRECHECK Judgment (CP): 1 ms (Fixed) Upslope 1 (U1): 000.0 to 500.0 ms (0.2ms ea.) Weld Time 1 (W1): 000.0 to 500.0 ms (0.2ms ea.) Downslope 1 (D1): 000.0 to 500.0 ms (0.2ms ea.) Cool Time (CO): 00.0 to 99.8 ms (0.2ms ea.) Upslope 2 (U2): 000.0 to 500.0 ms (0.2ms ea.) Weld Time 2 (W2): 000.0 to 500.0 ms (0.2ms ea.) Downslope 2 (D2): 000.0 to 500.0 ms (0.2ms ea.) Hold Time (HO): 000 to 999 ms (1ms ea.) When Upslope and Downslope are included in Weld Time. When Upslope and Downslope are not included in Weld Time. (The total time of Upslope Time, Weld Time and Downslope is up to 500 ms .)

Items	Common Specification in IPB-5000B		
Current Setting Range	Maximum current setting	Transformer	Setting range
	NORMAL	1T*-360*6	0.40 to 4.00 kA
	Transformer maximum current)	1T*-780*6	0.60 to 6.00kA
	LOW	IT*-360*6	0.10 to 4.00 kA
	Transformer maximum current)	1T*-780*6	0.15 to 6.00 kA
	The maximum current available for welding depends on the load such as the welding head used. When you use a general welding head, the approximate maximum current is 3000 A for IT* $-360^{*} 6$ and 4000A for IT*-780*6. Also, in LOW mode, the set current may not flow when the current less than 400A for IT*-360*6 or 600A for $1 \mathrm{IT}^{*}-780^{*} 6$ is set.		
Voltage Setting Range	0.30 to 9.99 V		
Power Setting Range	00.2 to 20.0kW (POWER-H) 0.10 to 9.99 kW (POWER-L) * POWER-H, POWER-L indicates Constant Power Control.		
Monitor	IPB-5000B holds the monitored value of all schedules (only the latest one for waveform) while the power is on. When the power is turned off, all values are cleared.		
Resistance PRE-CHECK Function	Weld Time Setting Range: 00.0 to 10.0 ms (0.2 ms ea.) Voltage Setting Range: 0.30 to 9.99 V (0.01 V ea.) Current Upper/Lower Limit: 0.00 to 9.99 kA (0.01 kA ea.)		
Monitor Upper/Lower Limit Setting Range	Current: 0.00 to 9.99 kA (0.01 kA ea.) Voltage: 0.00 to 9.99 V (0.01 V ea.) Power (POWER-H)*: 00.0 to 20.0 kW (0.1 kW ea.) (POWER-L)*: 0.00 to 9.99 kW (0.01 kW ea.) Resistance: 00.0 to $99.9 \mathrm{~m} \Omega$ ($0.1 \mathrm{~m} \Omega$ ea.) Weld Time: 000.0 to 500.0 ms (0.2 ms ea.) * POWER-H, POWER-L indicates Constant Power Control.		
Envelope	Upper/Lower Limit setting is possible for the only one waveform selected among Current, Voltage, Power and Resistance.		
Weld Stop	When WE1 or WE2 reaches the designated value of Current or Voltage, WE1 moves to CO and WE2, to HO. Setting Range of Weld Stop Current Value $\text { IT }{ }^{\star}-360^{*} 6: 0.40 \text { to } 4.00 \mathrm{kA}$ $\text { IT**-780*6: } 0.60 \text { to } 6.00 \mathrm{kA}$ Setting Range of Weld Stop Voltage Value $: 0.30 \text { to } 9.99 \mathrm{~V}$		

Items	Common Specification in IPB-5000B
Counter	Set at COUNTER. Count-up Output is produced when the counting arrives at Pre-set value for each mode. (1) TOTAL (Total Counter Mode) Every time the weld current is supplied, Count-up (+1 increment) is performed regardless of a judgment result. Counter Pre-set Setting Range: 000000 to 999999 (2) GOOD (Good Product Counter Mode) Every time GOOD is judged, Count-up is performed Counter Pre-set Setting Range: 000000 to 999999 (3) WORK (Production Counter Mode) Every time the counting arrives at the set value of Weld Counter, WORK Count is counted- up (+1 increment). When the monitored value is judged as No Good, Count-up is not performed. WELD Counter Pre-set Setting Range: 00 to 99 WORK Counter Pre-set Setting Range: 000000 to 999999 Note: The period for retaining the memory of counted numbers is approximately 10 days since the day when a power supply is turned off at latest.
Start Signal Stabilizing Period	Set at START SIG. TIME. Weld Sequence is started after finding the set value of 1, 5, 10 or 20 ms and the Start Signal.
Self-sustaining Method	Set at START SIG. HOLD. NO HOLD: No self-sustaining action WE HOLD: Self-sustaining action works from the start of current supply SQ HOLD: Self-sustaining action works from the start of SQD
Schedule Select Method	Set at SCHEDULE\#. EXT. (NP): Selected by the use of binary data EXT. (P): Selected by binary data with odd-numbered parity PANEL: Selected on Panel
Period for outputting END or GOOD Signal	Set at END SIG. TIME. Output for $10 \mathrm{~ms}, 100 \mathrm{~ms}$ or the period during which Start Signal is input (Note: if it is input 10 ms or less, END or GOOD Signal is output for 10 ms .). HOLD: Output for period during which Start Signal is input 10ms: Output for 10 ms 100ms: Output for 100 ms
Monitor Computing Range	Set at MONITOR MODE. EXCLUDE SLOPE: Computing a monitored value excluding Slope Period INCLUDE SLOPE : Computing a monitored value including Slope Period
PARITY/WE1STOP Input Selection	Set at SCHEDULE\#. EXT. (P): Parity Input at External Input Terminal Pin 14 EXT. (NP) or PANEL: WELD1 Stop Input at External Input Terminal Pin 14

Items	Common Specification in IPB-5000B
Starting Time of detecting No Current or No Voltage	Set at NO CURR MONITOR START. 00 to 10 ms (Starts to detect No Current or Voltage after the set period)
Pulse Monitoring Start Time	Set at PW MONITOR START. 00 to 10 ms (Starts the pulse monitoring after the set period)
NG Output Setting	Set at NG OUTPUT. NORMALLY CLOSE: Closed with Power Supply turned on and open with NG generated NORMALLY OPEN: Closed with NG generated
READY Output Setting	Set at READY OUTPUT. WELD ON: Closed with Weld Current Supply ready POWER ON: Closed with IPB-5000B turned on
Accuracy of Constant Current	$+/-3 \%$, Full Scale (Designated Condition / Fixed Load) at the case of setting and monitoring
Accuracy of Constant Voltage	$+/-3 \%$, Full Scale (Designated Condition / Fixed Load) at the case of setting and monitoring
Duty Cycle	See the duty cycle graph in the operation manual for the welding transformer in use IT*-360*6 or IT*-780*6.
Operation Environment	Temperature: 5 to $40^{\circ} \mathrm{C}$ Humidity: $\quad 90 \%$ or less (No condensation) Altitude: 1000 meters or lower Caution: Use this product in the environment without conductive dust. If conductive dust enters in the product, this may result in a failure, electric shock, or fire. When using this product in this environment, make contact with us.
Storage Environment	Temperature $-10^{\circ}-55^{\circ} \mathrm{C}$ and dew condensation not allowed
Heat-Resistant Class	E
Case Protection	IP20

	IPB-5000B-00-00/03/07	IPB-5000B-00-01/02/04/05
Weld Power Supply	Three-phase, 200 to 240 V AC $\pm 10 \%$ ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) (Voltage cannot be selected. Fixed to a customer-specified voltage in factory shipment.)	Three-phase, 380 to 480 V AC $\pm 10 \%$ ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) (Voltage cannot be selected. Fixed to a customer-specified voltage in factory shipment.)
	IPB-5000B-00-00/01/03/04/07	IPB-5000B-00-02/05
Outline dimensions (mm)	$269(\mathrm{H}) \times 172(\mathrm{~W}) \times 470(\mathrm{D})$ (No projections included)	$349(\mathrm{H}) \times 172(\mathrm{~W}) \times 470(\mathrm{D})$ (No projections included)
Mass (kg)	15	19

	IPB-5000B-00-03/04/05
Displacement Measurement Range	30.000 mm Max.
Displacement Measurement Accuracy	$+/-15 \mu \mathrm{~m}$
Displacement Sensor (Option)	GS-1830A manufactured by Ono Sokki Co. Ltd. GS-1813A manufactured by Ono Sokki Co. Ltd. LGK-110* manufactured by Mitutoyo Corp. ST1278* manufactured by HEIDENHAIN * An optional conversion cable is necessary.
Displacement Monitor Setting Range	Upper/Lower Limit Setting Range of Final Displacement: $-29.999 m m$ to +29.999mm (0.001mm ea.) Delay Time: 0 to 999ms
Workpiece Detection	At the end of Squeeze, the displacement is checked to confirm whether or not a workpiece is set. Upper/Lower Limit Setting Range of workpiece detection: $-29.999 m m$ to +29.999mm (0.001mm ea.)
Weld Stop	When WE1 or WE2 reaches the designated value of Displacement, WE1 moves to CO and WE2, to HO. Displacement Setting Range of Weld Stop: -29.999mm to $+29.999 m m ~(0.001 m m ~ e a) ~$.
Envelope	Possible to set Upper/Lower Limit Setting to Displacement waveform

(2) Optional Items (Separately Sold)

(1) Input Cables PK-01855-पロロ

If a customer procures the cable by oneself, prepare it in accordance with the following right-hand specifications.

Type	Branch No.	Length $\mathbf{(m)}$
Standard	-002	2
	-005	5
	-010	10
	-015	15
	-020	20

	Specifications of Standard Cable	
	Rated Voltage	
Section Area	600 VAC min.	
$\mathrm{mm}^{2} \mathrm{~min}$.		
No. of Cores	4	
	Cable Dia.	

Type	Branch No.	Length (m)
CE Marking Compliant	-102	2
	-105	5
	-110	10
	-115	15
	-120	20

Specifications of CE Marking Compliant Cable	
Rated Voltage	500 VAC min.
Section Area	$10 \mathrm{~mm}^{2} \mathrm{~min}$.
No. of Cores	4
Cable Dia.	25 mm max.
Compliance Standard	Conductor: VDE0812/0281 Insulation: VDE0250/0281

Output Cables PK-01856-ㅁㅁ
If a customer procures the cable by oneself, prepare it in accordance with the following right-hand specifications.

Type	Branch No.	Length (m)
Standard	-002	2
	-005	5
	-010	10

Specifications of Standard Cable	
Rated Voltage	600 VAC min.
Section Area	$8 \mathrm{~mm}^{2} \mathrm{~min}$.
No. of Cores	3
Cable Dia.	25 mm max.

Type	Branch No.	Length (m)
CE Marking Compliant	-102	2
	-105	5
	-110	10

Specifications of CE Marking Compliant Cable	
Rated Voltage	750 VAC min.
Section Area	$10 \mathrm{~mm}^{2} \mathrm{~min}$.
No. of Cores	3
Cable Dia.	25 mm max.
Compliance Standard	Conductor: VDE0812/0281 Insulation: VDE0250/0281

(3) [SENS] Cables SK-05741

Item	Branch No.	Length (m)
[SENS] Cable SK-05741	-002	2
	-005	5
	-010	10

(4) Start Cables A-03081

Item	Branch No.	Length (m)
Start Cable A-03081	-001	1
	-002	3

(5) Displacement Sensors

Item	Manufacturer
GS-1830A	ONO SOKKI Co. Ltd.
GS-1813A	
LGK-110	Mitutoyo Corp.
ST1278	HEIDENHAIN

© Displacement Sensor Conversion Cables

Item	Application
A-06037-001	LGK-110 (Mitutoyo)
A-06037-002	ST1278 (HEIDENHAIN)

12. Error Codes

If the Power Supply has a trouble, the screen displays the error code and message.

Error Code	Message	Cause	Corrective Action
E-01	SYSTEM ERROR	Error has been detected on control system of IPB-5000B.	Once turn off power and turn on again. If E-01 SYSTEM ERROR is displayed again, repair is required. Contact us.
E-02	MEMORY ERROR	Schedule data stored in memory are broken down.	Check all set data. The following is assumed to cause the data stored in memory to be corrupted. * Strong power noise or electrostatic noise * Abnormal voltage of power supply due to thunderbolt or lightning conduction * Exceed in writing count limit of flash memory It is required to write down set values for a later use and also convenient in case of data corruption. (Use attached Schedule Data Table.) When turning power on along with MENU key pressed, the memory is initialized and all data return to values on the factory shipment after displaying the message of "Initializing......Please wait a moment". Re-set the values on record. It takes approximately 10 seconds to initialize the memory. Do not turn off power for the period. If E-02 MEMORY ERROR is displayed again, repair is required. Contact us.
E-03	OVER HEAT	Temperature rises inside IPB-5000B and thermostat for power element inside power unit is open.	*Check whether or not duty cycle exceeds the specific value. Observe the value. *Stop the operation and, after cooling the Equipment, reset the error.
E-04	OVER HEAT (TRANS)	Temperature of weld transformer rises and thermostat is open inside weld transformer.	*Check connection of [SENS] Cable. *Check whether or not duty cycle exceeds the specific value. Observe the value. *Stop the operation and, after cooling the Equipment, reset the error.
E-05	OVER CURRENT	Actual weld current is greater than set value.	Check whether or not weld transformer and electrodes are normal.
E-06	POWER SUPPLY ERROR	Error has been detected on three-phase weld power supply.	Check input connection of three-phase weld power supply.

Error Code	Contents	Cause	Corrective Action
E-07	ABORT	Short-circuit wire is cut between Pin 1 and Pin 3 STOP on rear panel.	Connect Pin 1 to Pin 3 on rear terminal strip.
E-08	NO CURRENT	Weld current is not flowing. Or measured value of weld current is 3% or less of current range.	*Check the pressing force, electrode contact and wire connection of weld head. *Check the setting of SQZ. Set longer SQZ period than period of electrode moving. *At NO CURR MONITOR START in "STATUS Screen, start time of checking "No Current" can be set. It is possible to stop the detection of "No Current" at the start of current flow by that setting.
E-09	NO Voltage	Voltage across electrodes is 0.2 V or less. Or voltage detecting cable is not connected.	*Check connection and location of voltage detecting cable. *Check the pressing force, electrode contact and wire connection of weld head. *At NO CURR MONITOR START in STATUS Screen, start time of checking "No Current" can be set. It is possible to stop the detection of "No Current" at the start of current flow by that setting. This error does not happen when CURR is set at CONTROL setting in STATUS Screen.
E-11	PARITY ERROR	Sum of numbers of closed Schedule Select Signal wires and a Parity Signal wire is not odd.	Select and close Parity Signal so that the sum of the numbers of closed Schedule Select Signal wires and a Parity Signal wire can be odd. This error happens only when EXP. (P) is set at SCHEDULE\# setting in STATUS Screen.
E-12	INTERRUPT ERROR	Signals of Pin 20, W. INTERRUPT and Pin 14, PARITY(WE1STOP) at terminal strip on rear panel are closed at weld starting.	Check input of W. INTERRUPT and PARITY(WE1STOP).
E-13	CYCLE ERROR	Pin 5, 2ND STAGE has been open on rear panel while weld sequence operates.	Close Pin 5, 2ND STAGE until WE2 in weld sequence goes to an end. This error happens only when NO HOLD is set at START SIG. HOLD setting in STATUS Screen.
E-14	COUNT MEMORY ERROR	Count Data stored in memory are damaged.	Memory was erased because period for retaining memory of count data elapsed over specified period. The period for retaining the memory of count data is approximately 10 days since the day when a power supply is turned off at latest.

Error Code	Contents	Cause	Corrective Action
E-15	PRECHECK ERROR	Current is out of range between upper limit and lower limit set PRECHECK Screen when PRECHECK Current Supply is used.	*Check weld pickup (contamination) of electrodes, contact of electrodes and workpieces. *Check range set at PRECHECK Screen.
E-16	$\begin{aligned} & \text { CURR } \\ & \text { ERROR } \\ & \text { (HIGH) } \end{aligned}$	Measured weld current is out of upper limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-17	$\begin{aligned} & \text { CURR } \\ & \text { ERROR } \end{aligned}$ (LOW)	Measured weld current is out of lower limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-18	$\begin{aligned} & \text { VOLT } \\ & \text { ERROR } \\ & \text { (HIGH) } \end{aligned}$	Measured voltage across electrodes is out of upper limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-19	$\begin{aligned} & \text { VOLT } \\ & \text { ERROR } \\ & (\text { (LOW) } \end{aligned}$	Measured voltage across electrodes is out of lower limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-20	RESIST ERROR (HIGH)	Measured resistance across electrodes is out of upper limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-21	RESIST ERROR (LOW)	Measured resistance across electrodes is out of lower limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-22	POWER ERROR (HIGH)	Measured weld power is out of upper limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-23	POWER ERROR (LOW)	Measured weld power is out of lower limit set at COMPARATOR Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at COMPARATOR Screen.
E-24	COUNT UP	Counting has arrived at set pre-set count value.	Re-set counter.
E-25	OVER CURRENT (24VDC)	Internal 24VDC power supply output at terminal strip on rear panel is overloaded.	Turn off power and check connection at I/O terminal strip on rear panel.

Error Code	Contents	Cause	Corrective Action
E-26	DISPLACEMENT ERROR (HIGH)	Measured displacement is out of upper limit set at CONTROL Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at CONTROL Screen.
E-27	DISPLACEMENT ERROR (LOW)	Measured displacement is out of lower limit set at CONTROL Screen.	*Check workpieces, welder and welding power supply voltage. *Check range set at CONTROL Screen.
E-28	WELD TIME ERROR (HIGH)	Measured weld time is out of upper limit set at CONTROL Screen.	*Check workpieces, welder and welding power supply voltage. *Check weld stop setting in CONTROL Screen and weld stop input in external interface. *Check range set at CONTROL Screen.
E-29	WELD TIME ERROR (LOW)	Measured weld time is out of lower limit set at CONTROL Screen.	*Check workpieces, welder and welding power supply voltage. *Check weld stop setting in CONTROL Screen and weld stop input in external interface. *Check range set at CONTROL Screen.
E-30	WORK DETECT ERROR	Measured displacement at end of squeeze is out of range between lower and upper limit set at CONTROL Screen.	*Check workpieces setting and positioning. *Check range set at CONTROL Screen.

CAUTION

If the monitor value is not displayed, the WELD ON/OFF input terminal may be open in the process of sequence (including the screen display time. See 9.(1) Fundamental Sequence).

13. Outline Drawing

(1) IPB-5000B-00-00/01/03/04/07
(Dimensions in mm)

4-M4

(2) IPB-5000B-00-02/05

(Dimensions in mm)

(3) Displacement Sensors

(1) GS-1830A Type, Ono Sokki

(2) GS-1813A Type, Ono Sokki

(3) LGK-110 Type, Mitutoyo

(4) ST1278 Type, HEIDENHAIN

14. Schedule Data Table

(1) Weld SCHEDULE Setting

$\begin{array}{\|l\|l} 2 & \bar{u} \\ 0 & \bar{u} \\ \vdots \end{array}$																		
$\begin{array}{\|l\|l} \hline \text { w } \\ \hline 0 & \text { w } \\ \hline \end{array}$																		
$$																		
$\begin{array}{\|l\|l} \hline \mathbf{Z} & \overline{\mathrm{U}} \\ \hline \mathbf{y} \end{array}$																		
$$																		
N																		
$\stackrel{5}{\bar{u}}$																		
N																		
$0{ }^{\text {¢ }}$																		
$\begin{aligned} & \text { 믐 } \\ & \text { 오 } \end{aligned}$																		
$\stackrel{N}{\underset{3}{3}}$																		
O																		
${ }_{3}^{5}$																		
N																		
O																		
	$\begin{gathered} \text { O } \\ \stackrel{\rightharpoonup}{\mathbf{U}} \\ \text { © } \end{gathered}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \bar{N} \\ & \underset{U}{U} \\ & \mathcal{U} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \mathbf{U} \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & N \\ & \underset{N}{\mathbf{T}} \\ & \mathbf{N} \end{aligned}$	N N U ©	$\begin{aligned} & \stackrel{N}{N} \\ & \mathbf{T} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{N}{\mathbf{T}} \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & N \\ & \mathbf{N} \\ & \mathbf{U} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathbf{N}} \\ & \underset{\mathbf{U}}{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { T } \\ & \text { U } \end{aligned}$	$$	$\begin{aligned} & \mathbb{N} \\ & \underset{N}{\mathbf{U}} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { T } \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & \mathbf{U} \\ & \mathbf{N} \\ & \mathbf{U} \\ & \hline \end{aligned}$	º T U \sim	¢ M T U

$\begin{array}{\|l\|l} 2 & \bar{u} \\ 0 & \bar{u} \\ \vdots \end{array}$																		
$\begin{array}{\|l\|l} \hline \text { w } \\ \hline 0 & \text { w } \\ \hline \end{array}$																		
$$																		
$\begin{array}{\|l\|l} \hline \mathbf{Z} & \overline{\mathrm{U}} \\ \hline \mathbf{y} \end{array}$																		
$$																		
N																		
$\stackrel{5}{\bar{u}}$																		
N																		
$0{ }^{\text {¢ }}$																		
$\begin{aligned} & \text { 믐 } \\ & \text { 오 } \end{aligned}$																		
N																		
O																		
${ }_{3}^{5}$																		
N																		
O																		
	$\begin{aligned} & \text { N } \\ & \mathbf{T} \\ & \mathbf{U} \\ & \boldsymbol{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\top} \\ & \underset{U}{U} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \underset{T}{\top} \\ & \text { U } \end{aligned}$	$$	N さ U ©	$\begin{gathered} \underset{\sim}{T} \\ \underset{\sim}{U} \end{gathered}$	\pm さ U ©		$\begin{aligned} & \text { O } \\ & \mathbf{T} \\ & \mathbf{J} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{T}{U} \\ & \mathcal{U} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \underset{\sim}{\mathbf{U}} \\ & \boldsymbol{M} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \stackrel{T}{U} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { OP } \\ & \text { T } \\ & \text { U } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \bar{N} \\ & \bar{T} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { U } \end{aligned}$	N	ホ

$\begin{array}{l\|l} z & \bar{u} \\ 0 & \bar{u} \\ \hline \end{array}$																		
\bigcirc																		
O																		
$\begin{array}{l\|l} \mathrm{Z} & \overline{\mathrm{~L}} \end{array}$																		
ه																		
O																		
N																		
$\underset{3}{\square}$																		
¢ ${ }_{\sim}^{\text {N }}$																		
O																		
$\begin{aligned} & \text { 이 } \\ & \text { 오 } \end{aligned}$																		
${ }_{3}^{\text {N }}$																		
-																		
$\stackrel{5}{3}$																		
N																		
¢																		
	$\begin{aligned} & 10 \\ & \text { గ? } \\ & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { U } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Non } \\ & \text { T } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { g } \\ & \text { TN } \\ & \text { T } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ㅁ } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \bar{\top} \\ & \substack{U \\ 心} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \underset{T}{U} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { © } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{S} \\ & \mathbf{U} \\ & \boldsymbol{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { T } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \substack{U \\ \mathcal{U}} \end{aligned}$	$\begin{aligned} & \infty \\ & \substack{1 \\ \mathbf{U} \\ \text { U }} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \mathbf{T} \\ & \text { U } \end{aligned}$	안	T	N N ¢ U

$\begin{array}{\|l\|l} 2 & \bar{u} \\ 0 & \bar{u} \\ \vdots \end{array}$																		
$\begin{array}{\|l\|l} \hline \text { w } \\ \hline 0 & \text { w } \\ \hline \end{array}$																		
$$																		
$\begin{array}{\|l\|l} \hline \mathbf{Z} & \overline{\mathrm{U}} \\ \hline \mathbf{y} \end{array}$																		
$$																		
N																		
$\stackrel{5}{\bar{u}}$																		
N																		
$0{ }^{\text {¢ }}$																		
$\begin{aligned} & \text { 믐 } \\ & \text { 오 } \end{aligned}$																		
N																		
O																		
${ }_{3}^{5}$																		
N																		
O																		
	$$	$\begin{aligned} & \text { N } \\ & \text { I } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\top} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{1}{\mathbf{T}} \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \mathbf{I} \\ & \mathbf{U} \end{aligned}$	∞ $\stackrel{\infty}{\mathbf{T}}$ ©	$$	$\begin{aligned} & \text { O } \\ & \text { © } \\ & \text { U } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { } \\ & \mathbf{U} \\ & \boldsymbol{N} \end{aligned}$		$\begin{aligned} & \text { U } \\ & \text { N } \\ & \substack{U \\ \mathcal{N}} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ㅗ } \\ & \text { U } \\ & \boldsymbol{\omega} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathbb{1}} \\ & \mathbf{U} \\ & \boldsymbol{N} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \frac{\mathbf{T}}{\mathbf{U}} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { © } \\ & \text { T } \\ & \text { © } \end{aligned}$	¢ ¢ T U	을 ¢ ¢

$$																			
$\begin{array}{l\|l\|} \hline 1 & \stackrel{5}{3} \\ \hline \end{array}$																			
$\begin{array}{l\|l} \hline \text { O } & \text { N } \\ \text { N } \end{array}$																			
$\begin{array}{\|l\|l} \hline \mathbf{z} & \overline{\mathrm{u}} \\ \hline \end{array}$																			
足 ${ }_{\text {¢ }}^{\text {¹ }}$																			
\%																			
N																			
$\stackrel{5}{3}$																			
N																			
$0{ }^{\text {¢ }}$																			
$\begin{aligned} & \text { 음 } \\ & \text { 오 } \end{aligned}$																			
$\stackrel{\text { N }}{3}$																			
O																			
$\stackrel{5}{3}$																			
N																			
¢																			
	$\begin{aligned} & \text { O } \\ & \frac{0}{\mathbf{I}} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { 운 } \\ & \underset{U}{\mathbf{U}} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\Gamma}{\Sigma} \\ & \underset{\sim}{U} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{U} \\ & \text { U } \end{aligned}$	$$	ホ ড U U	n T U U	\bullet $\underset{\sim}{T}$ U	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\top} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\tau} \\ & \underset{\sim}{U} \\ & \hline \end{aligned}$	O $\stackrel{\rightharpoonup}{\mathbf{I}}$ U	$\begin{aligned} & \text { 오 } \\ & \stackrel{\rightharpoonup}{\mathbf{T}} \\ & \text { U } \end{aligned}$		$\begin{aligned} & \underset{N}{N} \\ & \underset{T}{U} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{M}{\mathrm{~N}} \\ & \underset{T}{U} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{U} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\mathbf{T}} \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{N}{\mathbf{N}} \\ & \underset{\sim}{U} \end{aligned}$	\xrightarrow{N}

(2) PRECHECK Setting

	TIME		COM	URR	ITEM	TIME		CO	JRR
SCH\#	TME	VoLT	HI	LO	SCH\#	TME	VoLT	HI	LO
SCH1					SCH28				
SCH2					SCH29				
SCH3					SCH30				
SCH4					SCH31				
SCH5					SCH32				
SCH6					SCH33				
SCH7					SCH34				
SCH8					SCH35				
SCH9					SCH36				
SCH10					SCH37				
SCH11					SCH38				
SCH12					SCH39				
SCH13					SCH40				
SCH14					SCH41				
SCH15					SCH42				
SCH16					SCH43				
SCH17					SCH44				
SCH18					SCH45				
SCH19					SCH46				
SCH20					SCH47				
SCH21					SCH48				
SCH22					SCH49				
SCH23					SCH50				
SCH24					SCH51				
SCH25					SCH52				
SCH26					SCH53				
SCH27					SCH54				

ITEM SCH\#	TIME	VOLT	COMP CURR		$$	TIME	VOLT	COMP CURR	
			HI	LO				HI	LO
SCH55					SCH84				
SCH56					SCH85				
SCH57					SCH86				
SCH58					SCH87				
SCH59					SCH88				
SCH60					SCH89				
SCH61					SCH90				
SCH62					SCH91				
SCH63					SCH92				
SCH64					SCH93				
SCH65					SCH94				
SCH66					SCH95				
SCH67					SCH96				
SCH68					SCH97				
SCH69					SCH98				
SCH70					SCH99				
SCH71					SCH100				
SCH72					SCH101				
SCH73					SCH102				
SCH74					SCH103				
SCH75					SCH104				
SCH76					SCH105				
SCH77					SCH106				
SCH78					SCH107				
SCH79					SCH108				
SCH80					SCH109				
SCH81					SCH110				
SCH82					SCH111				
SCH83					SCH112				

ITEM	TIME	VOLT	COMP CURR	
			HI	LO
SCH113				
SCH114				
SCH115				
SCH116				
SCH117				
SCH118				
SCH119				
SCH120				

ITEM	TIME	VOLT	COMP CURR	
SCH\#			HI	LO
SCH121				
SCH122				
SCH123				
SCH124				
SCH125				
SCH126				
SCH127				

(4) CONTROL Setting

** Only for model with displacement sensor (Option)

[^0]
** Only for model with displacement sensor (Option)

(5) STATUS Setting

STATUS

WELD TRANS	
WELD TIME	
START SIG.TIME	
START SIG.HOLD	
SCHEDULE\#	
END SIG.TIME	
MONITOR MODE	
CALCULATION MODE	
TRANS SCAN MODE	
COMM CONTROL	
COMM MODE	
COMM UNIT\#	
COMM SPEED	
NO CURR MONITOR START	
PW MONITOR START	
NG OUTPUT	
READY OUTPUT	

ERROR SETTING

| $E 08 \quad:$ NO CURRENT | |
| :--- | :--- | :--- |
| E09 \quad :NO VOLTAGE | |
| E16/E17:OUT LIMIT OF CURR | |
| E18/E19:OUT LIMIT OF VOLT | |
| E20/E21:OUT LIMIT OF POWER | |
| E22/E23:OUT LIMIT OF RESIST | |
| E26/E27:OUT LIMIT OF DISPLC | |
| E28/E29:OUT LIMIT OF TIME | |
| E15/E30:WORK CHECK ERROR | |

MISC

TRANS USER1	
DISPLACEMENT SENSOR STEP	
COUNTER	
PRESET (TOTAL/GOOD)	
PRESET (WORK)	
PRESET (WELD)	

IPB-5000B-MU Addendum

This addendum is designed to be a supplement to the IPB-5000B Operator Manual and it addresses the difference between the standard Amada Weld Tech IPB-5000B Inverter Power Supply and the Amada Weld Tech IPB-5000B-MU Inverter Power Supply. The Amada Weld Tech IPB-5000B Power Supplies with the-MU suffix (i.e. IPB-5000B-MU) include an I/O Connector Panel.

The standard IPB-5000B includes cable glands for all I/O connections. The cable glands essentially "hard-wire" the power supply into position, making it harder to relocate or change equipment. The added -MU Accessory Box includes panel mounted connectors, which allows for quick connect/disconnect of external equipment and easy relocation of equipment.

The physical difference between the IPB-5000B and IPB-5000B-MU rear panel is shown below:

In the standard IPB-5000B, the end user must terminate all I/O connections to the terminal block underneath the I/O cover. These terminated cables are then routed through and secured by the cable glands (see above). Refer to Chapters 5 and 8 in this manual for information on the Installation and External I/O connections respectively for information on interfacing with the IPB-5000B Inverter Power Supply.

Connection to the IPB-5000B-MU is the same as a standard IPB-5000B, except that some of the connection points will terminate on the panel mount connectors. All panel mount connectors terminate on the terminal block underneath the I/O cover. Below is a simple schematic of the - MU - I/O Accessory Box, list of mating connectors, and a pin-out detail for each panel connector. Refer to Chapter 8 in this manual for information on the function and operation of the external I/O connections.

-MU - I/O Accessory Box Schematic + Mating Connectors

The terminal strip shown in the schematic below is located behind the -MU -I/O Accessory Box. Refer to Chapter 8. External Interface for more information on the available signals on this terminal strip.

PANEL CONNECTOR DETAIL

Firing Switch Cable

PIN \#	SIGNAL NAME	MAX VOLTAGE	MAX CURRENT	I/O	COMMENTS
1	2 ND	24 VDC	5 mA	I	Same as Terminal Block \# 5
2	$24 \mathrm{~V}-$	---	---	---	Connects to Footswitch Connector

J1: 24VDC Valve Output Connector

PIN \#	SIGNAL NAME	MAX VOLTAGE	MAX CURRENT	I/O	COMMENTS
1	SOL COM	24 VDC	0.5 A	O	Same as Terminal Block \# 34
2	SOL1	24 VDC	0.5 A	O	Same as Terminal Block \# 32
3	Not Used				
4	Not Used				

J2: 24VDC Power Input Connector

PIN \#	SIGNAL NAME	MAX VOLTAGE	MAX CURRENT	I/O	COMMENTS
1	Not Used				
2	Not Used				
3	SOL COM	24 VDC	0.5 A	O	Same as Terminal Block \# 34
4	SOL POWER	24 VDC	0.5 A	O	Same as Terminal Block \# 31

FTSW: Foot Switch Connector

PIN \#	SIGNAL NAME	MAX VOLTAGE	MAX CURRENT	I/O	COMMENTS
1	Not Used				
2	1 ST	24 VDC	5 mA	I	Same as Terminal Block \# 4
3	2 ND	24 VDC	5 mA	I	Connects to Firing Switch Cable
4	COM	---	---	---	Same as Terminal Block \# 6

[^0]:

